Global Simulations of Phase State and Equilibration Time Scales of Secondary Organic Aerosols with GEOS-Chem

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2025-02-10 DOI:10.1021/acsearthspacechem.4c0028110.1021/acsearthspacechem.4c00281
Regina Luu, Meredith Schervish, Nicole A. June, Samuel E. O’Donnell, Shantanu H. Jathar, Jeffrey R. Pierce and Manabu Shiraiwa*, 
{"title":"Global Simulations of Phase State and Equilibration Time Scales of Secondary Organic Aerosols with GEOS-Chem","authors":"Regina Luu,&nbsp;Meredith Schervish,&nbsp;Nicole A. June,&nbsp;Samuel E. O’Donnell,&nbsp;Shantanu H. Jathar,&nbsp;Jeffrey R. Pierce and Manabu Shiraiwa*,&nbsp;","doi":"10.1021/acsearthspacechem.4c0028110.1021/acsearthspacechem.4c00281","DOIUrl":null,"url":null,"abstract":"<p >The phase state of secondary organic aerosols (SOA) can range from liquid through amorphous semisolid to glassy solid, which is important to consider as it influences various multiphase processes including SOA formation and partitioning, multiphase chemistry, and cloud activation. In this study, we simulate the glass transition temperature and viscosity of SOA over the globe using the global chemical transport model, GEOS-Chem. The simulated spatial distributions show that SOA at the surface exist as liquid over equatorial regions and oceans, semisolid in the midlatitude continental regions, and glassy solid over lands with low relative humidity. The predicted SOA viscosities are mostly consistent with the available measurements. In the free troposphere, SOA particles are mostly predicted to be semisolid at 850 hPa and glassy solid at 500 hPa, except over tropical regions including Amazonia, where SOA are predicted to be low viscous. Phase state also exhibits seasonal variation with a higher frequency of semisolid and solid particles in winter compared to warmer seasons. We calculate equilibration time scales of SOA partitioning (τ<sub>eq</sub>) and effective mass accommodation coefficient (α<sub>eff</sub>), indicating that τ<sub>eq</sub> is shorter than the chemical time step of GEOS-Chem of 20 min and α<sub>eff</sub> is close to unity for most locations at the surface level, supporting the application of equilibrium SOA partitioning. However, τ<sub>eq</sub> is prolonged and α<sub>eff</sub> is lowered over drylands and most regions in the upper troposphere, suggesting that kinetically limited growth would need to be considered for these regions in future large-scale model studies.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 2","pages":"288–302 288–302"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00281","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The phase state of secondary organic aerosols (SOA) can range from liquid through amorphous semisolid to glassy solid, which is important to consider as it influences various multiphase processes including SOA formation and partitioning, multiphase chemistry, and cloud activation. In this study, we simulate the glass transition temperature and viscosity of SOA over the globe using the global chemical transport model, GEOS-Chem. The simulated spatial distributions show that SOA at the surface exist as liquid over equatorial regions and oceans, semisolid in the midlatitude continental regions, and glassy solid over lands with low relative humidity. The predicted SOA viscosities are mostly consistent with the available measurements. In the free troposphere, SOA particles are mostly predicted to be semisolid at 850 hPa and glassy solid at 500 hPa, except over tropical regions including Amazonia, where SOA are predicted to be low viscous. Phase state also exhibits seasonal variation with a higher frequency of semisolid and solid particles in winter compared to warmer seasons. We calculate equilibration time scales of SOA partitioning (τeq) and effective mass accommodation coefficient (αeff), indicating that τeq is shorter than the chemical time step of GEOS-Chem of 20 min and αeff is close to unity for most locations at the surface level, supporting the application of equilibrium SOA partitioning. However, τeq is prolonged and αeff is lowered over drylands and most regions in the upper troposphere, suggesting that kinetically limited growth would need to be considered for these regions in future large-scale model studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Characterization of Amino Acid Nanolayers and Their Interactions under Simulated Planetary Conditions Photochemical Emission from Soil as a Source of Atmospheric CO2 Anharmonic Vibrational Frequencies and Spectroscopic Constants for the Six Conformers of 1,2-Diiminoethane: A Promising Prebiotic Molecule for Astronomical Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1