An untargeted metabolome-wide association study of maternal perinatal tobacco smoking in newborn blood spots.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Metabolomics Pub Date : 2025-02-20 DOI:10.1007/s11306-025-02225-3
Di He, Qi Yan, Karan Uppal, Douglas I Walker, Dean P Jones, Beate Ritz, Julia E Heck
{"title":"An untargeted metabolome-wide association study of maternal perinatal tobacco smoking in newborn blood spots.","authors":"Di He, Qi Yan, Karan Uppal, Douglas I Walker, Dean P Jones, Beate Ritz, Julia E Heck","doi":"10.1007/s11306-025-02225-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Maternal tobacco smoking in the perinatal period increases the risk for adverse outcomes in offspring.</p><p><strong>Objective: </strong>To better understand the biological pathways through which maternal tobacco use may have long-term impacts on child metabolism, we performed a high-resolution metabolomics (HRM) analysis in newborns, following an untargeted metabolome-wide association study workflow.</p><p><strong>Methods: </strong>The study population included 899 children without cancer diagnosis before age 6 and born between 1983 and 2011 in California. Newborn dried blood spots were collected by the California Genetic Disease Screening Program between 12 and 48 h after birth and stored for later research use. Based on HRM, we considered mothers to be active smokers if they were self- or provider-reported smokers on birth certificates or if we detected any cotinine or high hydroxycotinine intensities in newborn blood. We used partial least squares discriminant analysis and Mummichog pathway analysis to identify metabolites and metabolic pathways associated with maternal tobacco smoking.</p><p><strong>Results: </strong>A total of 26,183 features were detected with HRM, including 1003 that were found to be associated with maternal smoking late in pregnancy and early postpartum (Variable Importance in Projection (VIP) scores > = 2). Smoking affected metabolites and metabolic pathways in neonatal blood including vitamin A (retinol) metabolism, the kynurenine pathway, and tryptophan and arachidonic acid metabolism.</p><p><strong>Conclusion: </strong>The smoking-associated metabolites and pathway perturbations that we identified suggested inflammatory responses and have also been implicated in chronic diseases of the central nervous system and the lung. Our results suggest that infant metabolism in the early postnatal period reflects smoking specific physiologic responses to maternal smoking with strong biologic plausibility.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 2","pages":"30"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02225-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Maternal tobacco smoking in the perinatal period increases the risk for adverse outcomes in offspring.

Objective: To better understand the biological pathways through which maternal tobacco use may have long-term impacts on child metabolism, we performed a high-resolution metabolomics (HRM) analysis in newborns, following an untargeted metabolome-wide association study workflow.

Methods: The study population included 899 children without cancer diagnosis before age 6 and born between 1983 and 2011 in California. Newborn dried blood spots were collected by the California Genetic Disease Screening Program between 12 and 48 h after birth and stored for later research use. Based on HRM, we considered mothers to be active smokers if they were self- or provider-reported smokers on birth certificates or if we detected any cotinine or high hydroxycotinine intensities in newborn blood. We used partial least squares discriminant analysis and Mummichog pathway analysis to identify metabolites and metabolic pathways associated with maternal tobacco smoking.

Results: A total of 26,183 features were detected with HRM, including 1003 that were found to be associated with maternal smoking late in pregnancy and early postpartum (Variable Importance in Projection (VIP) scores > = 2). Smoking affected metabolites and metabolic pathways in neonatal blood including vitamin A (retinol) metabolism, the kynurenine pathway, and tryptophan and arachidonic acid metabolism.

Conclusion: The smoking-associated metabolites and pathway perturbations that we identified suggested inflammatory responses and have also been implicated in chronic diseases of the central nervous system and the lung. Our results suggest that infant metabolism in the early postnatal period reflects smoking specific physiologic responses to maternal smoking with strong biologic plausibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
期刊最新文献
Identification of metabolite-disease associations based on knowledge graph. Metabolic and proteomic analysis of a medicinal morel (Morchella elata) from Western Himalayas, Kashmir. Metabolomic profiling of plasma from glioma and meningioma patients based on two complementary mass spectrometry techniques. Evaluation of solutions for stabilizing feces in metabolomics studies using GC × GC-TOFMS. Harnessing NMR technology for enhancing field crop improvement: applications, challenges, and future perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1