Multi-cancer early detection based on serum surface-enhanced Raman spectroscopy with deep learning: a large-scale case-control study.

IF 7 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL BMC Medicine Pub Date : 2025-02-21 DOI:10.1186/s12916-025-03887-5
Yuxiang Lin, Qiyi Zhang, Hanxi Chen, Shuhang Liu, Kaiming Peng, Xiaojie Wang, Liyong Zhang, Jun Huang, Xiuqing Yan, Xueliang Lin, Uddin M D Hasan, Mahabub Sarwara, Fangmeng Fu, Shangyuan Feng, Chuan Wang
{"title":"Multi-cancer early detection based on serum surface-enhanced Raman spectroscopy with deep learning: a large-scale case-control study.","authors":"Yuxiang Lin, Qiyi Zhang, Hanxi Chen, Shuhang Liu, Kaiming Peng, Xiaojie Wang, Liyong Zhang, Jun Huang, Xiuqing Yan, Xueliang Lin, Uddin M D Hasan, Mahabub Sarwara, Fangmeng Fu, Shangyuan Feng, Chuan Wang","doi":"10.1186/s12916-025-03887-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early detection of cancer can help patients with more effective treatments and result in better prognosis. Unfortunately, established cancer screening technologies are limited for use, especially for multi-cancer early detection. In this study, we described a serum-based platform integrating surface-enhanced Raman spectroscopy (SERS) technology with resampling strategy, feature dimensionality enhancement, deep learning and interpretability analysis methods for sensitive and accurate pan-cancer screening.</p><p><strong>Methods: </strong>Totally, 1655 early-stage patients with breast cancer (BC, n = 569), lung cancer (LC, n = 513), thyroid cancer (TC, n = 220), colorectal cancer (CC, n = 215), gastric cancer (GC, n = 100), esophageal cancer (EC, n = 38), and 1896 healthy controls (HC) were enrolled. The serum SERS spectra were obtained from each participant. Data dimension enhancement was conducted by heatmap transformation and continuous wavelet transform (CWT). The dimensionalization SERS spectral data were subsequently analyzed by residual neural network (ResNet) as convolutional neural network (CNN) algorithm. Class activation mapping (CAM) method was performed to elucidate the potential biological significance of spectral data classification.</p><p><strong>Results: </strong>All participants were divided into a training set and a test set with a ratio of 7:3. The BorderlineSMOTE method was selected as the most appropriate resampling strategy and the deep neural network (DNN) model achieved desirable performance among all groups (accuracy rate: 93.15%, precision rate: 88:46%, recall rate: 85.68%, and F1-score: 86.98%), with the generated AUC values of 0.991 for HC, 0.995 for BC, 0.979 for LC, 0.996 for TC, 0.994 for CC, 0.982 for GC, and 0.941 for EC, respectively. Furthermore, the combination use of SERS spectra data and ResNet (form of heatmap) were also capable of effectively distinguishing different categories and making accurate predictions (accuracy rate: 94.75%, precision rate: 89.02, recall rate: 86.97, and F1-score: 87.88), with the AUC values of 0.996 for HC, 0.995 for BC, 0.988 for LC, 0.999 for TC, 0.993 for CC, 0.985 for GC, and 0.940 for EC, respectively. Additionally, strong wave number range of the spectral data was observed in the CAM analysis.</p><p><strong>Conclusions: </strong>Our study has offered a highly effective serum SERS-based approach for multi-cancer early detection, which might shed new light on cancer screening in clinical practice.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"97"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846373/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03887-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early detection of cancer can help patients with more effective treatments and result in better prognosis. Unfortunately, established cancer screening technologies are limited for use, especially for multi-cancer early detection. In this study, we described a serum-based platform integrating surface-enhanced Raman spectroscopy (SERS) technology with resampling strategy, feature dimensionality enhancement, deep learning and interpretability analysis methods for sensitive and accurate pan-cancer screening.

Methods: Totally, 1655 early-stage patients with breast cancer (BC, n = 569), lung cancer (LC, n = 513), thyroid cancer (TC, n = 220), colorectal cancer (CC, n = 215), gastric cancer (GC, n = 100), esophageal cancer (EC, n = 38), and 1896 healthy controls (HC) were enrolled. The serum SERS spectra were obtained from each participant. Data dimension enhancement was conducted by heatmap transformation and continuous wavelet transform (CWT). The dimensionalization SERS spectral data were subsequently analyzed by residual neural network (ResNet) as convolutional neural network (CNN) algorithm. Class activation mapping (CAM) method was performed to elucidate the potential biological significance of spectral data classification.

Results: All participants were divided into a training set and a test set with a ratio of 7:3. The BorderlineSMOTE method was selected as the most appropriate resampling strategy and the deep neural network (DNN) model achieved desirable performance among all groups (accuracy rate: 93.15%, precision rate: 88:46%, recall rate: 85.68%, and F1-score: 86.98%), with the generated AUC values of 0.991 for HC, 0.995 for BC, 0.979 for LC, 0.996 for TC, 0.994 for CC, 0.982 for GC, and 0.941 for EC, respectively. Furthermore, the combination use of SERS spectra data and ResNet (form of heatmap) were also capable of effectively distinguishing different categories and making accurate predictions (accuracy rate: 94.75%, precision rate: 89.02, recall rate: 86.97, and F1-score: 87.88), with the AUC values of 0.996 for HC, 0.995 for BC, 0.988 for LC, 0.999 for TC, 0.993 for CC, 0.985 for GC, and 0.940 for EC, respectively. Additionally, strong wave number range of the spectral data was observed in the CAM analysis.

Conclusions: Our study has offered a highly effective serum SERS-based approach for multi-cancer early detection, which might shed new light on cancer screening in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medicine
BMC Medicine 医学-医学:内科
CiteScore
13.10
自引率
1.10%
发文量
435
审稿时长
4-8 weeks
期刊介绍: BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.
期刊最新文献
Antidepressant use and cognitive decline in patients with dementia: a national cohort study. Relationship of tobacco smoking to cause-specific mortality: contemporary estimates from Australia. Development and validation of the systemic nutrition/inflammation index for improving perioperative management of non-small cell lung cancer. Guidelines for the use of lung ultrasound to optimise the management of neonatal respiratory distress: international expert consensus. Long-term outcomes in patients with acute coronary syndrome undergoing percutaneous coronary intervention without standard modifiable cardiovascular risk factors: findings from the OPT-CAD cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1