Wenhao Liu, Pawan Koirala, Evan R. Glaser, Hanlin Wu, Aswin Kondusamy, Nikhil Dhale, Mahammed S. Patel, Sam White, James C. Culbertson, Jaime A. Freitas, Bing Lv
{"title":"High-yield growth of high-quality cubic BAs single crystals using the Bridgman method","authors":"Wenhao Liu, Pawan Koirala, Evan R. Glaser, Hanlin Wu, Aswin Kondusamy, Nikhil Dhale, Mahammed S. Patel, Sam White, James C. Culbertson, Jaime A. Freitas, Bing Lv","doi":"10.1063/5.0245911","DOIUrl":null,"url":null,"abstract":"The increasing complexity of semiconductor devices fabricated from wide-bandgap and ultra-wide-bandgap materials demand advanced thermal management solutions to mitigate heat buildup, a major cause of device failure. High thermal conductivity materials are thus becoming crucial for thermal management. Cubic boron arsenide (c-BAs) has emerged as a promising candidate. However, challenges remain in synthesizing high-quality crystals with low defect concentrations, high homogeneous thermal conductivity, and high yields using the conventional chemical vapor transport method. In this study, we report the synthesis of high-yield c-BAs single crystals using the Bridgman method. The crystals exhibit high uniformity, reduced defect densities, and lower carrier concentrations as confirmed through x-ray diffraction, Raman spectroscopy, temperature-dependent photoluminescence, and electrical transport measurements. Our work represents a significant step toward scalable production of high-quality c-BAs for industrial applications, offering a practical solution for improving thermal management in next-generation electronic devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"32 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245911","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing complexity of semiconductor devices fabricated from wide-bandgap and ultra-wide-bandgap materials demand advanced thermal management solutions to mitigate heat buildup, a major cause of device failure. High thermal conductivity materials are thus becoming crucial for thermal management. Cubic boron arsenide (c-BAs) has emerged as a promising candidate. However, challenges remain in synthesizing high-quality crystals with low defect concentrations, high homogeneous thermal conductivity, and high yields using the conventional chemical vapor transport method. In this study, we report the synthesis of high-yield c-BAs single crystals using the Bridgman method. The crystals exhibit high uniformity, reduced defect densities, and lower carrier concentrations as confirmed through x-ray diffraction, Raman spectroscopy, temperature-dependent photoluminescence, and electrical transport measurements. Our work represents a significant step toward scalable production of high-quality c-BAs for industrial applications, offering a practical solution for improving thermal management in next-generation electronic devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.