Vigilance against climate change-induced regime shifts for phosphorus restoration in shallow lake ecosystems

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-02-26 DOI:10.1016/j.watres.2025.123397
Yang Li, Yuan Liu, Siqi Yu, Bin Xing, Xinwei Xu, Haihao Yu, Ligong Wang, Dihua Wang, Chunhua Liu, Dan Yu
{"title":"Vigilance against climate change-induced regime shifts for phosphorus restoration in shallow lake ecosystems","authors":"Yang Li, Yuan Liu, Siqi Yu, Bin Xing, Xinwei Xu, Haihao Yu, Ligong Wang, Dihua Wang, Chunhua Liu, Dan Yu","doi":"10.1016/j.watres.2025.123397","DOIUrl":null,"url":null,"abstract":"The dual pressure of anthropogenic activities and frequent extreme weather events has triggered a transition from macrophyte to algal dominance in shallow lakes. Phosphorus (P) is the key driver of regime shifts that can lead to a decline in the stability and resilience of lake ecosystems. However, the mechanisms underlying such regime shifts, and the effects of state transitions on internal P loading during macrophyte restoration in large shallow eutrophic lakes, remain to be fully elucidated. This study utilised long-term in situ monitoring data, across three distinct lake states (bare ground, macrophyte-dominated stage, and algae-dominated stage) to elucidate the accumulation and release mechanisms of sedimentary P during regime shifts. The findings demonstrated that the rehabilitation of submerged plants efficiently reduced internal P loading (water column P, sediment P fractions, and P flux), while the persistence of algal blooms was driven by the reductive release of Fe-P from sediments and the dissolution of Al-P from suspended particulate matter. High temperature, low dissolved oxygen, and high pH largely modulate the pathways and mechanisms of P supply during regime shifts. The combined pressures of extreme weather (heavy rainfall, strong winds, and extreme heat) and trophic cascades from fish stocking can trigger a shift from macrophytes to algae in shallow lakes. Appropriate management of the structure and biomass of aquatic animal communities (e.g., small-bodied or omnibenthivorous fish) and optimization of the food web structure can effectively improve water quality and maintain ecosystem stability. These findings enrich the theoretical understanding of regime-shift mechanisms from an ecosystem perspective and offer novel insights into P remediation in large shallow eutrophic lakes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"10 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123397","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dual pressure of anthropogenic activities and frequent extreme weather events has triggered a transition from macrophyte to algal dominance in shallow lakes. Phosphorus (P) is the key driver of regime shifts that can lead to a decline in the stability and resilience of lake ecosystems. However, the mechanisms underlying such regime shifts, and the effects of state transitions on internal P loading during macrophyte restoration in large shallow eutrophic lakes, remain to be fully elucidated. This study utilised long-term in situ monitoring data, across three distinct lake states (bare ground, macrophyte-dominated stage, and algae-dominated stage) to elucidate the accumulation and release mechanisms of sedimentary P during regime shifts. The findings demonstrated that the rehabilitation of submerged plants efficiently reduced internal P loading (water column P, sediment P fractions, and P flux), while the persistence of algal blooms was driven by the reductive release of Fe-P from sediments and the dissolution of Al-P from suspended particulate matter. High temperature, low dissolved oxygen, and high pH largely modulate the pathways and mechanisms of P supply during regime shifts. The combined pressures of extreme weather (heavy rainfall, strong winds, and extreme heat) and trophic cascades from fish stocking can trigger a shift from macrophytes to algae in shallow lakes. Appropriate management of the structure and biomass of aquatic animal communities (e.g., small-bodied or omnibenthivorous fish) and optimization of the food web structure can effectively improve water quality and maintain ecosystem stability. These findings enrich the theoretical understanding of regime-shift mechanisms from an ecosystem perspective and offer novel insights into P remediation in large shallow eutrophic lakes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Vigilance against climate change-induced regime shifts for phosphorus restoration in shallow lake ecosystems The substrate configuration influences pollutant removal in constructed wetlands: from the aspects of submerged status of substrate and carbon-felt distribution Could chloroxylenol be used as WBE biomarker in gravity sewers? Fates, behaviors and feasible conditions Associations of anthropogenic activity and tributaries with the physicochemical, nutrient and microbial composition of the Ganga (Ganges) River, India Quantifying the Fate of Biogenic Elements in Mangrove Aquifers: Insights from Reactive Transport Modeling under Saltwater-Freshwater Mixing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1