Rachel E Bowman, Neil J MacLusky, Yessenia Sarmiento, Maya Frankfurt, Marisa Gordon, Victoria N Luine
{"title":"Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters.","authors":"Rachel E Bowman, Neil J MacLusky, Yessenia Sarmiento, Maya Frankfurt, Marisa Gordon, Victoria N Luine","doi":"10.1210/en.2003-1759","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to stress during gestation results in physiological and behavioral alterations that persist into adulthood. This study examined the effects of prenatal stress on the postnatal expression of sexually differentiated cognitive, hormonal, and neurochemical profiles in male and female rats. Pregnant dams were subjected to restraint stress three times daily for 45 min during d 14-21 of pregnancy. The offspring of control and prenatally stressed dams were tested for anxiety-related and cognitive behaviors, stress and gonadal steroid hormone levels, as well as monoamines and metabolite levels in selected brain regions. Postnatal testosterone levels (measured at 1 and 5 d) did not differ between controls and prenatally stressed animals. In adulthood, the serum corticosterone response to stress was attenuated in prenatally stressed females, eliminating the sex difference normally observed in this parameter. Prenatally stressed females exhibited higher anxiety levels, evidenced by longer open field entry latencies. Prenatal stress had no effect on object recognition memory, but eliminated the advantage normally seen in the male performance of a spatial memory task. Neurochemical profiles of prenatally stressed females were altered toward the masculine phenotype in the prefrontal cortex, amygdala, and hippocampus. Thus, prenatal stress altered subsequent cognitive, endocrine, and neurochemical responses in a sex-specific manner. These data reinforce the view that prenatal stress affects multiple aspects of brain development, interfering with the expression of normal behavioral, neuroendocrine, and neurochemical sex differences. These data have implications for the effects of prenatal stress on the development of sexually dimorphic endocrine and neurological disorders.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":"145 8","pages":"3778-87"},"PeriodicalIF":3.3000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/en.2003-1759","citationCount":"214","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/en.2003-1759","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2004/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 214
Abstract
Exposure to stress during gestation results in physiological and behavioral alterations that persist into adulthood. This study examined the effects of prenatal stress on the postnatal expression of sexually differentiated cognitive, hormonal, and neurochemical profiles in male and female rats. Pregnant dams were subjected to restraint stress three times daily for 45 min during d 14-21 of pregnancy. The offspring of control and prenatally stressed dams were tested for anxiety-related and cognitive behaviors, stress and gonadal steroid hormone levels, as well as monoamines and metabolite levels in selected brain regions. Postnatal testosterone levels (measured at 1 and 5 d) did not differ between controls and prenatally stressed animals. In adulthood, the serum corticosterone response to stress was attenuated in prenatally stressed females, eliminating the sex difference normally observed in this parameter. Prenatally stressed females exhibited higher anxiety levels, evidenced by longer open field entry latencies. Prenatal stress had no effect on object recognition memory, but eliminated the advantage normally seen in the male performance of a spatial memory task. Neurochemical profiles of prenatally stressed females were altered toward the masculine phenotype in the prefrontal cortex, amygdala, and hippocampus. Thus, prenatal stress altered subsequent cognitive, endocrine, and neurochemical responses in a sex-specific manner. These data reinforce the view that prenatal stress affects multiple aspects of brain development, interfering with the expression of normal behavioral, neuroendocrine, and neurochemical sex differences. These data have implications for the effects of prenatal stress on the development of sexually dimorphic endocrine and neurological disorders.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.