An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism.

Cell host & microbe Pub Date : 2023-10-11 Epub Date: 2023-10-03 DOI:10.1016/j.chom.2023.09.002
Catherine D Shelton, Elizabeth Sing, Jessica Mo, Nicolas G Shealy, Woongjae Yoo, Julia Thomas, Gillian N Fitz, Pollyana R Castro, Tara T Hickman, Teresa P Torres, Nora J Foegeding, Jacob K Zieba, M Wade Calcutt, Simona G Codreanu, Stacy D Sherrod, John A McLean, Sun H Peck, Fan Yang, Nicholas O Markham, Min Liu, Mariana X Byndloss
{"title":"An early-life microbiota metabolite protects against obesity by regulating intestinal lipid metabolism.","authors":"Catherine D Shelton, Elizabeth Sing, Jessica Mo, Nicolas G Shealy, Woongjae Yoo, Julia Thomas, Gillian N Fitz, Pollyana R Castro, Tara T Hickman, Teresa P Torres, Nora J Foegeding, Jacob K Zieba, M Wade Calcutt, Simona G Codreanu, Stacy D Sherrod, John A McLean, Sun H Peck, Fan Yang, Nicholas O Markham, Min Liu, Mariana X Byndloss","doi":"10.1016/j.chom.2023.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"1604-1619.e10"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chom.2023.09.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
早期微生物群代谢产物通过调节肠道脂质代谢来预防肥胖。
早期微生物群保护儿童免受环境因素影响的机制在很大程度上仍然未知。使用一个小鼠模型,在该模型中,年轻小鼠同时暴露于抗生素和高脂肪(HF)饮食,我们发现,作为小肠(SI)微生物群的主要成员,乳酸杆菌物种调节肠上皮细胞(IEC),以限制早期饮食诱导的肥胖。乳酸杆菌衍生的代谢产物苯基乳酸(PLA)通过增加SI IEC中过氧化物酶体增殖物激活受体γ(PPAR-γ)的丰度,防止早期接触抗生素和HF饮食引起的代谢功能障碍。因此,PLA是一种微生物群衍生的代谢产物,它激活小肠上皮中的保护途径,调节肠道脂质代谢,并在生命早期预防抗生素相关的肥胖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From poo to promise: Fecal microbiota transplants support immunotherapy re-sensitization in solid tumors. Human cytomegalovirus degrades DMXL1 to inhibit autophagy, lysosomal acidification, and viral assembly. A specific enterotype derived from gut microbiome of older individuals enables favorable responses to immune checkpoint blockade therapy. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Opposing diet, microbiome, and metabolite mechanisms regulate inflammatory bowel disease in a genetically susceptible host.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1