Modeling Fragile X syndrome in neurogenesis: An unexpected phenotype and a novel tool for future therapies

B. Bardoni, M. Capovilla, E. Lalli
{"title":"Modeling Fragile X syndrome in neurogenesis: An unexpected phenotype and a novel tool for future therapies","authors":"B. Bardoni, M. Capovilla, E. Lalli","doi":"10.1080/23262133.2016.1270384","DOIUrl":null,"url":null,"abstract":"ABSTRACT FMRP is an RNA-binding protein involved in synaptic translation. Its absence causes a form of intellectual disability, the Fragile X syndrome (FXS). Small neuroanatomical abnormalities, present both in human and mouse FMRP-deficient brains, suggest a subtle critical role of this protein in neurogenesis. Stable depletion of FMRP has been obtained in a mouse embryonic stem cell line Fmr1 (shFmr1 ES) that does not display morphological alterations, but an abnormal expression of a subset of genes mainly involved in neuronal differentiation and maturation. Inducing the differentiation of shFmr1 ES cells into the neuronal lineage results in an accelerated generation of neural progenitors and neurons during the first steps of neurogenesis. This transient phenotype is due to an elevated level of the Amyloid Precursor Protein (APP), whose mRNA is a target of FMRP. APP is processed by the BACE-1 enzyme, producing the β-amyloid (Aβ) peptide accelerating neurogenesis by activating the expression of Ascll. Inhibition of the BACE-1 enzyme rescues the phenotype of shFmr1 ES cells. Here we discuss the importance of the shFmr1 ES line not only to understand the physiopathology of FXS but also as a tool to screen biomolecules for new FXS therapies.","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1270384","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2016.1270384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

ABSTRACT FMRP is an RNA-binding protein involved in synaptic translation. Its absence causes a form of intellectual disability, the Fragile X syndrome (FXS). Small neuroanatomical abnormalities, present both in human and mouse FMRP-deficient brains, suggest a subtle critical role of this protein in neurogenesis. Stable depletion of FMRP has been obtained in a mouse embryonic stem cell line Fmr1 (shFmr1 ES) that does not display morphological alterations, but an abnormal expression of a subset of genes mainly involved in neuronal differentiation and maturation. Inducing the differentiation of shFmr1 ES cells into the neuronal lineage results in an accelerated generation of neural progenitors and neurons during the first steps of neurogenesis. This transient phenotype is due to an elevated level of the Amyloid Precursor Protein (APP), whose mRNA is a target of FMRP. APP is processed by the BACE-1 enzyme, producing the β-amyloid (Aβ) peptide accelerating neurogenesis by activating the expression of Ascll. Inhibition of the BACE-1 enzyme rescues the phenotype of shFmr1 ES cells. Here we discuss the importance of the shFmr1 ES line not only to understand the physiopathology of FXS but also as a tool to screen biomolecules for new FXS therapies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经发生中脆性X综合征的建模:一种意想不到的表型和未来治疗的新工具
摘要FMRP是一种参与突触翻译的RNA结合蛋白。它的缺失会导致一种智力残疾,即脆性X综合征(FXS)。在人类和小鼠FMRP缺陷的大脑中都存在微小的神经解剖学异常,这表明这种蛋白质在神经发生中起着微妙的关键作用。在小鼠胚胎干细胞系Fmr1(shFmr1-ES)中获得了FMRP的稳定耗竭,该细胞系不显示形态改变,但主要参与神经元分化和成熟的基因亚群异常表达。在神经发生的第一步中,诱导shFmr1 ES细胞分化为神经元谱系导致神经祖细胞和神经元的加速生成。这种短暂表型是由于淀粉样前体蛋白(APP)水平升高,其mRNA是FMRP的靶点。APP由BACE-1酶处理,产生β-淀粉样蛋白(Aβ)肽,通过激活Ascoll的表达来加速神经发生。BACE-1酶的抑制挽救了shFmr1-ES细胞的表型。在这里,我们讨论了shFmr1-ES系的重要性,它不仅可以理解FXS的病理生理学,而且可以作为筛选新的FXS疗法的生物分子的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of neoblasts in the patterned postembryonic growth of the platyhelminth Macrostomum lignano. There's no place like home - HGF-c-MET signaling and melanocyte migration into the mammalian cochlea Effects of Isx-9 and stress on adult hippocampal neurogenesis: Experimental considerations and future perspectives. Opportunities lost and gained: Changes in progenitor competence during nervous system development. Endogenous Brain Repair: Overriding intrinsic lineage determinates through injury-induced micro-environmental signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1