Holography in the invisible. From the thermal infrared to the terahertz waves: outstanding applications and fundamental limits

M. Georges, Yuchen Zhao, J. Vandenrijt
{"title":"Holography in the invisible. From the thermal infrared to the terahertz waves: outstanding applications and fundamental limits","authors":"M. Georges, Yuchen Zhao, J. Vandenrijt","doi":"10.37188/lam.2022.022","DOIUrl":null,"url":null,"abstract":"Since its invention, holography has been mostly applied at visible wavelengths in a variety of applications. Specifically, non-destructive testing of manufactured objects was a driver for developing holographic methods and all related ones based on the speckle pattern recording. One substantial limitation of holographic non-destructive testing is the setup stability requirements directly related to the laser wavelength. This observation has driven some works for 15 years: developing holography at wavelengths much longer than visible ones. In this paper, we will first review researches carried out in the infrared, mostly digital holography at thermal infrared wavelengths around 10 micrometers. We will discuss the advantages of using such wavelengths and show different examples of applications. In nondestructive testing, large wavelengths allow using digital holography in perturbed environments on large objects and measure large deformations, typical of the aerospace domain. Other astonishing applications such as reconstructing scenes through smoke and flames were proposed. When moving further in the spectrum, digital holography with so-called Terahertz waves (up to 3 millimeters wavelength) has also been studied. The main advantage here is that these waves easily penetrate some materials. Therefore, one can envisage Terahertz digital holography to reconstruct the amplitude and phase of visually opaque objects. We review some cases in which Terahertz digital holography has shown potential in biomedical and industrial applications. We will also address some fundamental bottlenecks that prevent fully benefiting from the advantages of digital holography when increasing the wavelength.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.37188/lam.2022.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Since its invention, holography has been mostly applied at visible wavelengths in a variety of applications. Specifically, non-destructive testing of manufactured objects was a driver for developing holographic methods and all related ones based on the speckle pattern recording. One substantial limitation of holographic non-destructive testing is the setup stability requirements directly related to the laser wavelength. This observation has driven some works for 15 years: developing holography at wavelengths much longer than visible ones. In this paper, we will first review researches carried out in the infrared, mostly digital holography at thermal infrared wavelengths around 10 micrometers. We will discuss the advantages of using such wavelengths and show different examples of applications. In nondestructive testing, large wavelengths allow using digital holography in perturbed environments on large objects and measure large deformations, typical of the aerospace domain. Other astonishing applications such as reconstructing scenes through smoke and flames were proposed. When moving further in the spectrum, digital holography with so-called Terahertz waves (up to 3 millimeters wavelength) has also been studied. The main advantage here is that these waves easily penetrate some materials. Therefore, one can envisage Terahertz digital holography to reconstruct the amplitude and phase of visually opaque objects. We review some cases in which Terahertz digital holography has shown potential in biomedical and industrial applications. We will also address some fundamental bottlenecks that prevent fully benefiting from the advantages of digital holography when increasing the wavelength.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不可见的全息术。从热红外到太赫兹波:杰出的应用和基本限制
自发明以来,全息术主要应用于可见波长的各种应用。具体来说,制造物体的无损检测是发展全息方法和所有相关的基于散斑模式记录的驱动因素。全息无损检测的一个实质性限制是与激光波长直接相关的设置稳定性要求。这一观察结果推动了15年来的一些工作:开发比可见光波长长得多的全息摄影技术。在本文中,我们将首先回顾在红外领域进行的研究,主要是热红外波长在10微米左右的数字全息。我们将讨论使用这种波长的优点,并展示不同的应用实例。在无损检测中,大波长允许在扰动环境中对大型物体使用数字全息技术,并测量航空航天领域典型的大变形。其他令人惊讶的应用,如通过烟雾和火焰重建场景。当在光谱中进一步移动时,也研究了所谓的太赫兹波(波长达3毫米)的数字全息。主要的优点是这些波很容易穿透一些材料。因此,人们可以设想太赫兹数字全息来重建视觉上不透明物体的振幅和相位。我们回顾了太赫兹数字全息在生物医学和工业应用中显示潜力的一些案例。我们还将解决在增加波长时阻碍充分利用数字全息优势的一些基本瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Ultra-wideband Waveguide-coupled Photodiodes Heterogeneously Integrated on a Thin-film Lithium Niobate Platform Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Front Matter: Volume 12507 Research on key technology of compound polishing of off-axis parabolic mirror Precision polishing of the mandrel for x-ray grazing incidence mirrors in the Einstein probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1