A maximum Likelihood Approach to Analyzing Incomplete Longitudinal Data in Mammary Tumor Development Experiments with Mice.

Jihnhee Yu, Albert Vexler, Alan D Hutson
{"title":"A maximum Likelihood Approach to Analyzing Incomplete Longitudinal Data in Mammary Tumor Development Experiments with Mice.","authors":"Jihnhee Yu, Albert Vexler, Alan D Hutson","doi":"10.4038/sljastats.v13i0.5124","DOIUrl":null,"url":null,"abstract":"<p><p>Longitudinal mammary tumor development studies using mice as experimental units are affected by i) missing data towards the end of the study by natural death or euthanasia, and ii) the presence of censored data caused by the detection limits of instrumental sensitivity. To accommodate these characteristics, we investigate a test to carry out K-group comparisons based on maximum likelihood methodology. We derive a relevant likelihood ratio test based on general distributions, investigate its properties of based on theoretical propositions, and evaluate the performance of the test via a simulation study. We apply the results to data extracted from a study designed to investigate the development of breast cancer in mice.</p>","PeriodicalId":91408,"journal":{"name":"Sri Lankan journal of applied statistics","volume":"13 1","pages":"61-85"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sri Lankan journal of applied statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/sljastats.v13i0.5124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal mammary tumor development studies using mice as experimental units are affected by i) missing data towards the end of the study by natural death or euthanasia, and ii) the presence of censored data caused by the detection limits of instrumental sensitivity. To accommodate these characteristics, we investigate a test to carry out K-group comparisons based on maximum likelihood methodology. We derive a relevant likelihood ratio test based on general distributions, investigate its properties of based on theoretical propositions, and evaluate the performance of the test via a simulation study. We apply the results to data extracted from a study designed to investigate the development of breast cancer in mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析小鼠乳腺肿瘤发生实验中不完整纵向数据的最大似然法
以小鼠为实验单位进行的纵向乳腺肿瘤发生研究受到以下因素的影响:i)研究接近尾声时因小鼠自然死亡或安乐死而导致的数据缺失;ii)仪器灵敏度的检测极限导致的数据删减。为了适应这些特点,我们研究了一种基于最大似然法进行 K 组比较的检验方法。我们基于一般分布推导出相关的似然比检验,根据理论命题研究其特性,并通过模拟研究评估检验的性能。我们将结果应用于一项旨在研究小鼠乳腺癌发展的研究中提取的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness of Using Candlestick Charts to Forecast Ethereum Price Direction: A Machine Learning Approach A Multi-Level Analysis of Help-Seeking Behaviour of Male Victims of Intimate Partner Violence A Mixed Model Approach for Identifying the Impact of Soft Productivity Factors on Employee Turnover among Information Technology Employees in Sri Lanka Estimating COVID-19 Prevalence in Sri Lanka: A Dynamic Sampling Model Approach A Bayesian Network Analysis of Calendar Effects in the Colombo Stock Exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1