Downregulation of CRHBP is associated with trophoblast invasion inhibition in recurrent pregnancy loss.

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY Reproduction Pub Date : 2023-12-14 Print Date: 2024-01-01 DOI:10.1530/REP-23-0326
Fengrun Sun, Liyuan Cui, Jinfeng Qian, Meirong Du, Songcun Wang
{"title":"Downregulation of CRHBP is associated with trophoblast invasion inhibition in recurrent pregnancy loss.","authors":"Fengrun Sun, Liyuan Cui, Jinfeng Qian, Meirong Du, Songcun Wang","doi":"10.1530/REP-23-0326","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Corticotropin-releasing hormone binding protein (CRHBP) is fundamental to the stress response and plays an important role in parturition during pregnancy. This study shows that abnormal CRHBP expression could be an early warning sign of recurrent pregnancy loss and that CRHBP knockdown could suppress HTR8/SVneo cell invasion by the PKC signaling pathway via interacting with CRH receptor 2.</p><p><strong>Abstract: </strong>Trophoblast invasion is critical for placentation and pregnancy success. Trophoblast dysfunction results in many pregnancy complications, including recurrent pregnancy loss (RPL). Corticotropin-releasing hormone binding protein (CRHBP) is fundamental to the stress response and plays an important role in parturition during pregnancy via binding with CRH. To further characterize its function in early pregnancy, we explored the expression of CRHBP in villi during early pregnancy. Compared with normal pregnant women, we demonstrated that the expression of CRHBP decreased in the trophoblasts and villi in RPL patients and that knockdown of CRHBP expression could suppress HTR8/SVneo cell invasion significantly. Our further exploration indicated that the capacity of CRHBP for regulating trophoblast invasion was associated with the PKC signaling pathway via interacting with CRH receptor 2. These findings might provide a new fundamental mechanism for successful pregnancy and a new diagnostic and therapeutic target for RPL.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-23-0326","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In brief: Corticotropin-releasing hormone binding protein (CRHBP) is fundamental to the stress response and plays an important role in parturition during pregnancy. This study shows that abnormal CRHBP expression could be an early warning sign of recurrent pregnancy loss and that CRHBP knockdown could suppress HTR8/SVneo cell invasion by the PKC signaling pathway via interacting with CRH receptor 2.

Abstract: Trophoblast invasion is critical for placentation and pregnancy success. Trophoblast dysfunction results in many pregnancy complications, including recurrent pregnancy loss (RPL). Corticotropin-releasing hormone binding protein (CRHBP) is fundamental to the stress response and plays an important role in parturition during pregnancy via binding with CRH. To further characterize its function in early pregnancy, we explored the expression of CRHBP in villi during early pregnancy. Compared with normal pregnant women, we demonstrated that the expression of CRHBP decreased in the trophoblasts and villi in RPL patients and that knockdown of CRHBP expression could suppress HTR8/SVneo cell invasion significantly. Our further exploration indicated that the capacity of CRHBP for regulating trophoblast invasion was associated with the PKC signaling pathway via interacting with CRH receptor 2. These findings might provide a new fundamental mechanism for successful pregnancy and a new diagnostic and therapeutic target for RPL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRHBP的下调与复发性妊娠损失中滋养层侵袭抑制有关。
滋养层侵入对胎盘形成和妊娠成功至关重要。滋养层功能障碍导致许多妊娠并发症,包括复发性妊娠损失(RPL)。促肾上腺皮质激素释放激素结合蛋白(CRHBP)属于CRF家族,是应激反应的基础,通过与CRH结合在妊娠分娩中发挥重要作用。为了进一步表征其在妊娠早期的功能,我们探讨了CRHBP在妊娠早期绒毛中的表达。与正常孕妇相比,我们发现RPL患者滋养层和绒毛中CRHBP的表达降低,并且CRHBP表达的降低可以显著抑制HTR8/SVneo细胞的侵袭。我们的进一步探索表明,CRHBP调节滋养层侵袭的能力与PKC信号通路有关,该通路通过与CRH受体2相互作用。这些发现可能为成功妊娠提供新的基本机制,并为RPL提供新的诊断和治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
期刊最新文献
REPRODUCTIVE HEALTH IN TRANS AND GENDER-DIVERSE PATIENTS: Gonadal tissue cryopreservation in transgender and gender-diverse people. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: A contemporary review of machine learning to predict adverse pregnancy outcomes from pharmaceuticals, including DDIs. O-GlcNAc participates in the meiosis of aging oocytes by mediating mitochondrial function. REPRODUCTIVE HEALTH IN TRANS AND GENDER-DIVERSE PATIENTS: Trauma-informed reproductive care for transgender and nonbinary people. SON controls mouse early embryonic development by regulating RNA splicing and histone methylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1