Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks

M. Tan, Xingyuan Xu, D. Moss
{"title":"Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks","authors":"M. Tan, Xingyuan Xu, D. Moss","doi":"10.21203/RS.3.RS-453033/V1","DOIUrl":null,"url":null,"abstract":"\n Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 109 operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-453033/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 109 operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可扩展光学神经网络的千兆op /s速度光子感知器与Kerr微梳
光学人工神经网络(ONNs)在超高计算速度和能源效率方面具有巨大的潜力。我们报告了一种使用集成Kerr光学微梳的新型onn方法。这种方法是可编程和可扩展的,能够达到超高速。我们通过将突触映射到49个波长来实现每秒11.9 x 109次操作(Giga-OPS)的操作速度,即每次操作8比特,相当于95.2千兆位/秒(Gbps),展示了ONNs的基本构建块——单个神经元感知器。我们在手写数字识别和癌细胞检测上测试了感知器,分别达到了90%和85%的准确率。通过使用现成的电信技术将感知器扩展到深度学习网络,我们可以实现用于实时海量数据处理的矩阵乘法的高吞吐量操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Localization of Active Aerial Targets Using a Single Terrestrial Receiver Site Feasibility Study on Intra-Grid Location Estimation Using Power ENF Signals Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks Nonlinear methods to quantify Movement Variability in Human-Humanoid Interaction Activities Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1