MODELING OF GRAVITY EFFECTS IN STREAMLINE-BASED SIMULATION FOR THERMAL RECOVERY

Usman Usman
{"title":"MODELING OF GRAVITY EFFECTS IN STREAMLINE-BASED SIMULATION FOR THERMAL RECOVERY","authors":"Usman Usman","doi":"10.29017/scog.30.3.976","DOIUrl":null,"url":null,"abstract":"Gravity effects are more prominent in thermal recovery simulations due to larger densitydifference between phases. Historically, the streamline method has been unable toaccount for gravity effects. This is a result of assuming that the fluid path follows thestreamline path and therefore no communication among streamlines. However with gravity,a fluid pathline is different from a fluid streamline. Each phase can move vertically asa result of the gravity segregation effect in addition to the flow along streamline.Gravity effects are accounted in the streamline method by an operator splitting technique.The idea is to isolate the convective flow from diffusion due to gravity for separatesolutions. The convective part is calculated along the common streamline trajectories andthe diffusion part is determined by the direction of gravity. While this has been done successfullyfor isothermal problems, it is still a challenge to obtain both accuracy and efficiencyfor non-isothermal flow. This paper further examines the mixed streamline methodwith an operator splitting technique for this class of problems. The pressure equation fordefining streamlines was derived by summing up the mass conservation equations. Then,the mass and heat transport equations in terms of the streamline time-of-flight coordinatewere solved for each streamline. A gravity step will be followed by solving the segregationequations over the dimensional grid. For simplification of modeling, heat was assumed totransfer by convection only, of which direction is parallel with the flowing phases and theinfluence of temperature in the simulation model is through changes in fluid viscosity only.The proposed approach was tested through simulation of heavy oil recovery by means ofhot waterflooding. The results were verified with those of a commercial fully implicit thermalsimulator.","PeriodicalId":21649,"journal":{"name":"Scientific Contributions Oil and Gas","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Contributions Oil and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29017/scog.30.3.976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gravity effects are more prominent in thermal recovery simulations due to larger densitydifference between phases. Historically, the streamline method has been unable toaccount for gravity effects. This is a result of assuming that the fluid path follows thestreamline path and therefore no communication among streamlines. However with gravity,a fluid pathline is different from a fluid streamline. Each phase can move vertically asa result of the gravity segregation effect in addition to the flow along streamline.Gravity effects are accounted in the streamline method by an operator splitting technique.The idea is to isolate the convective flow from diffusion due to gravity for separatesolutions. The convective part is calculated along the common streamline trajectories andthe diffusion part is determined by the direction of gravity. While this has been done successfullyfor isothermal problems, it is still a challenge to obtain both accuracy and efficiencyfor non-isothermal flow. This paper further examines the mixed streamline methodwith an operator splitting technique for this class of problems. The pressure equation fordefining streamlines was derived by summing up the mass conservation equations. Then,the mass and heat transport equations in terms of the streamline time-of-flight coordinatewere solved for each streamline. A gravity step will be followed by solving the segregationequations over the dimensional grid. For simplification of modeling, heat was assumed totransfer by convection only, of which direction is parallel with the flowing phases and theinfluence of temperature in the simulation model is through changes in fluid viscosity only.The proposed approach was tested through simulation of heavy oil recovery by means ofhot waterflooding. The results were verified with those of a commercial fully implicit thermalsimulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热采流线模拟中重力效应的建模
由于相间密度差较大,重力效应在热采模拟中更为突出。从历史上看,流线法无法解释重力效应。这是假设流体路径遵循流线路径的结果,因此流线之间没有通信。然而,在重力作用下,流体路径不同于流体流线。除了沿流线流动外,由于重力偏析效应,各相还可以垂直运动。在流线法中,重力效应由算子分裂技术来计算。这个想法是将对流流动和由于重力引起的扩散分离开来。对流部分沿共同流线轨迹计算,扩散部分由重力方向决定。虽然这已经成功地解决了等温问题,但对于非等温流动,获得精度和效率仍然是一个挑战。本文进一步研究了混合流线方法与算子分裂技术对这类问题的求解。定义流线的压力方程是由质量守恒方程的总和导出的。然后,用流线飞行时间坐标求解了每条流线的质量和热量传递方程。重力步骤之后是在维度网格上求解分离方程。为简化建模,假设热量仅通过对流传递,其方向与流动相平行,模拟模型中温度的影响仅通过流体粘度的变化。通过热水驱稠油开采模拟试验,验证了该方法的可行性。结果与商用全隐式热模拟器的结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
SYNTHESIS AND EVALUATION OF SULPHONYL BORATE ESTER AS GREASE ADDITIVE Integrated Approach to Investigate the Potential of Asphalt/Tar Sand on Buton Island, Indonesia Comparative Study of Plug and Abandonment Using Balanced Plug Cementing Method: Case Study of Well “NV-01” Field “NS” The Comparation of Water Saturation Approaches to Reveal a Low Resistivity Reservoir Potential Case in Gumai Formation, South Sumatra Basin The 3D Seismic Survey Design of South Walio Offshore, Indonesia: Optimizing the 3D Survey Design Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1