{"title":"Cuckoo Search Optimization based PI Controller Tuning for Hopper Tank System","authors":"Vinothkumar C, E. C","doi":"10.1177/1063293X221114937","DOIUrl":null,"url":null,"abstract":"The paper work focuses on soft computing and Conventional controller tuning approach to design of PI controller, for a nonlinear hopper tank liquid level control system process Industries. The automation industries provide conventional techniques where it is impossible to maintain its settling time which motivates to do the research in this field. The system processes the combination of a conical and cylindrical tank for providing Multi-region based mathematical modelling to obtain the first order with delay time (FOPDT) process transfer function model. The Ziegler Nichols, Cohen-coon, Tyreus Luben, CHR (Chien, Hrones, and Reswick), IMC (Internal Model Control), Direct Synthesis, FOPI(Fractional Order PI) Conventional tuning formulae and Cuckoo Search Optimization (CSO) algorithm are used to optimize the servo regulatory responses of PI controller. The integral and proportional gain of the PI controller is said to produce the fastest settling time and reduces the error using performance indices and achieves Liquid Level control in hopper tank. Comparison is made for the various conventional controller tuning methods with Cuckoo Search Optimization tuning responses and identified to CSO-PI method offers enhanced Optimized Performance of settling time which was about 105.58 s which is relatively less while comparing to Conventional PI controller tuning methods for a different region based system.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"38 1","pages":"300 - 308"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X221114937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The paper work focuses on soft computing and Conventional controller tuning approach to design of PI controller, for a nonlinear hopper tank liquid level control system process Industries. The automation industries provide conventional techniques where it is impossible to maintain its settling time which motivates to do the research in this field. The system processes the combination of a conical and cylindrical tank for providing Multi-region based mathematical modelling to obtain the first order with delay time (FOPDT) process transfer function model. The Ziegler Nichols, Cohen-coon, Tyreus Luben, CHR (Chien, Hrones, and Reswick), IMC (Internal Model Control), Direct Synthesis, FOPI(Fractional Order PI) Conventional tuning formulae and Cuckoo Search Optimization (CSO) algorithm are used to optimize the servo regulatory responses of PI controller. The integral and proportional gain of the PI controller is said to produce the fastest settling time and reduces the error using performance indices and achieves Liquid Level control in hopper tank. Comparison is made for the various conventional controller tuning methods with Cuckoo Search Optimization tuning responses and identified to CSO-PI method offers enhanced Optimized Performance of settling time which was about 105.58 s which is relatively less while comparing to Conventional PI controller tuning methods for a different region based system.