Large-scale packet classification on FPGA

Shijie Zhou, Yun Qu, V. Prasanna
{"title":"Large-scale packet classification on FPGA","authors":"Shijie Zhou, Yun Qu, V. Prasanna","doi":"10.1109/ASAP.2015.7245738","DOIUrl":null,"url":null,"abstract":"Packet classification is a key network function enabling a variety of network applications, such as network security, Quality of Service (QoS) routing, and other value-added services. Routers perform packet classification based on a predefined rule set. Packet classification faces two challenges: (1) the data rate of the network traffic keeps increasing, and (2) the size of the rule sets are becoming very large. In this paper, we propose an FPGA-based packet classification engine for large rule sets. We present a decomposition-based approach, where each field of the packet header is searched separately. Then we merge the partial search results from all the fields using a merging network. Experimental results show that our design can achieve a throughput of 147 Million Packets Per Second (MPPS), while supporting upto 256K rules on a state-of-the-art FPGA. Compared to the prior works on FPGA or multi-core processors, our design demonstrates significant performance improvements.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"37 1","pages":"226-233"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Packet classification is a key network function enabling a variety of network applications, such as network security, Quality of Service (QoS) routing, and other value-added services. Routers perform packet classification based on a predefined rule set. Packet classification faces two challenges: (1) the data rate of the network traffic keeps increasing, and (2) the size of the rule sets are becoming very large. In this paper, we propose an FPGA-based packet classification engine for large rule sets. We present a decomposition-based approach, where each field of the packet header is searched separately. Then we merge the partial search results from all the fields using a merging network. Experimental results show that our design can achieve a throughput of 147 Million Packets Per Second (MPPS), while supporting upto 256K rules on a state-of-the-art FPGA. Compared to the prior works on FPGA or multi-core processors, our design demonstrates significant performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的大规模分组分类
报文分类是一项重要的网络功能,可以实现网络安全、QoS路由和其他增值业务等多种网络应用。路由器根据预定义的规则集对报文进行分类。分组分类面临两个挑战:(1)网络流量的数据速率不断提高;(2)规则集的规模变得非常大。本文提出了一种基于fpga的大型规则集分组分类引擎。我们提出了一种基于分解的方法,其中包头的每个字段都是单独搜索的。然后使用合并网络对所有字段的部分搜索结果进行合并。实验结果表明,我们的设计可以实现每秒1.47亿数据包(MPPS)的吞吐量,同时在最先进的FPGA上支持高达256K的规则。与先前在FPGA或多核处理器上的工作相比,我们的设计显示出显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Conference Chairs - ASAP 2020 Message from the ASAP 2016 chairs An IEEE 754 double-precision floating-point multiplier for denormalized and normalized floating-point numbers Application-set driven exploration for custom processor architectures Stochastic circuit design and performance evaluation of vector quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1