Investigation of Conjugate Effects on Forced Convection in Diamond (Diverging–Converging) Microchannels

IF 1.9 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Heat Transfer-transactions of The Asme Pub Date : 2023-02-08 DOI:10.1115/1.4056691
S. Goli, Sandip K. Saha, A. Agrawal
{"title":"Investigation of Conjugate Effects on Forced Convection in Diamond (Diverging–Converging) Microchannels","authors":"S. Goli, Sandip K. Saha, A. Agrawal","doi":"10.1115/1.4056691","DOIUrl":null,"url":null,"abstract":"\n A three-dimensional solid–fluid conjugate model is employed to provide physical insights into the effect of wall conduction on fluid convection in a diamond-shaped microchannel. The study covers the effect of divergence-convergence angle, width ratio, thermal conductivity ratio, thickness ratio, and Reynolds number on peripheral heat flux, temperature, and Nusselt number profiles. Isotherms show a multidirectional thermal gradient for low thermal conductivity ratios, whereas only an axial thermal gradient is seen for higher thermal conductivity ratios. Furthermore, the overall axial surface temperature gradients decrease with increasing divergence-convergence angle and decreasing width ratio. The study also shows that the thermal conductivity ratio significantly influences the Nusselt number, while the thickness ratio has only a moderate influence for all geometries. The analysis also reveals that at a particular intermediate thermal conductivity ratio, the Nusselt number becomes maximum. Lastly, a nondimensional wall conduction number is used to characterize conjugate effects in diamond microchannels. The wall conduction effect is inconsequential in diamond microchannels when the nondimensional wall conduction number is less than 0.01. The present study is beneficial from a practical perspective as it helps design the optimum channel geometries subjected to conjugate effects for many heat transfer applications.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056691","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A three-dimensional solid–fluid conjugate model is employed to provide physical insights into the effect of wall conduction on fluid convection in a diamond-shaped microchannel. The study covers the effect of divergence-convergence angle, width ratio, thermal conductivity ratio, thickness ratio, and Reynolds number on peripheral heat flux, temperature, and Nusselt number profiles. Isotherms show a multidirectional thermal gradient for low thermal conductivity ratios, whereas only an axial thermal gradient is seen for higher thermal conductivity ratios. Furthermore, the overall axial surface temperature gradients decrease with increasing divergence-convergence angle and decreasing width ratio. The study also shows that the thermal conductivity ratio significantly influences the Nusselt number, while the thickness ratio has only a moderate influence for all geometries. The analysis also reveals that at a particular intermediate thermal conductivity ratio, the Nusselt number becomes maximum. Lastly, a nondimensional wall conduction number is used to characterize conjugate effects in diamond microchannels. The wall conduction effect is inconsequential in diamond microchannels when the nondimensional wall conduction number is less than 0.01. The present study is beneficial from a practical perspective as it helps design the optimum channel geometries subjected to conjugate effects for many heat transfer applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金刚石(发散-收敛)微通道中强制对流的共轭效应研究
采用三维固-流共轭模型,对菱形微通道中壁面传导对流体对流的影响进行了物理分析。研究了发散-收敛角、宽度比、导热比、厚度比和雷诺数对周边热流密度、温度和努塞尔数分布的影响。低导热系数时,等温线呈现多向热梯度,而高导热系数时,等温线只呈现轴向热梯度。轴向表面温度梯度随散辐角和宽度比的增大而减小。研究还表明,导热系数显著影响努塞尔数,而厚度比对所有几何形状的影响都不大。分析还表明,在特定的中间导热系数下,努塞尔数达到最大值。最后,利用无量纲壁导数来表征金刚石微通道中的共轭效应。当无量纲壁导数小于0.01时,金刚石微通道的壁导效应不显著。本研究从实际角度来看是有益的,因为它有助于在许多传热应用中设计受共轭效应影响的最佳通道几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
期刊最新文献
Thermal Resistance Of Heated Superhydrophobic Channels with Streamwise Thermocapillary Stress Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux Significant Enhancement of Near-Field Radiative Heat Transfer by Misaligned Bilayer Heterostructure of Graphene-Covered Gratings Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate Significance of Upstream Wall Conditions in Characterizing the Heat Transfer Phenomena of Rarefied Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1