A GPU-based correlator X-engine implemented on the CHIME Pathfinder

N. Denman, M. Amiri, K. Bandura, L. Connor, M. Dobbs, M. Fandino, M. Halpern, A. Hincks, G. Hinshaw, C. Höfer, P. Klages, K. Masui, J. Parra, L. Newburgh, A. Recnik, J. Shaw, K. Sigurdson, Kendrick M. Smith, K. Vanderlinde
{"title":"A GPU-based correlator X-engine implemented on the CHIME Pathfinder","authors":"N. Denman, M. Amiri, K. Bandura, L. Connor, M. Dobbs, M. Fandino, M. Halpern, A. Hincks, G. Hinshaw, C. Höfer, P. Klages, K. Masui, J. Parra, L. Newburgh, A. Recnik, J. Shaw, K. Sigurdson, Kendrick M. Smith, K. Vanderlinde","doi":"10.1109/ASAP.2015.7245702","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a custom GPU-based compute cluster that provides the correlation X-engine of the CHIME Pathfinder radio telescope. It is among the largest such systems in operation, correlating 32,896 baselines (256 inputs) over 400MHz of radio bandwidth. Making heavy use of consumer-grade parts and a custom software stack, the system was developed at a small fraction of the cost of comparable installations. Unlike existing GPU backends, this system is built around OpenCL kernels running on consumer-level AMD GPUs, taking advantage of low-cost hardware and leveraging packed integer operations to double algorithmic efficiency. The system achieves the required 105 TOPS in a 10kW power envelope, making it one of the most power-efficient X-engines in use today.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"73 1","pages":"35-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We present the design and implementation of a custom GPU-based compute cluster that provides the correlation X-engine of the CHIME Pathfinder radio telescope. It is among the largest such systems in operation, correlating 32,896 baselines (256 inputs) over 400MHz of radio bandwidth. Making heavy use of consumer-grade parts and a custom software stack, the system was developed at a small fraction of the cost of comparable installations. Unlike existing GPU backends, this system is built around OpenCL kernels running on consumer-level AMD GPUs, taking advantage of low-cost hardware and leveraging packed integer operations to double algorithmic efficiency. The system achieves the required 105 TOPS in a 10kW power envelope, making it one of the most power-efficient X-engines in use today.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的相关器x引擎在CHIME探路者上实现
本文提出了一种基于gpu的计算集群的设计和实现,该集群提供了CHIME探路者射电望远镜的相关x引擎。它是运行中最大的此类系统之一,在400MHz无线电带宽上关联32,896个基线(256个输入)。由于大量使用消费级部件和定制软件堆栈,该系统的开发成本仅为同类安装的一小部分。与现有的GPU后端不同,该系统是围绕OpenCL内核构建的,运行在消费级AMD GPU上,利用低成本硬件和利用打包整数运算来提高算法效率。该系统在10kW的功率范围内达到了所需的105 TOPS,使其成为当今使用的最节能的x发动机之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Conference Chairs - ASAP 2020 Message from the ASAP 2016 chairs An IEEE 754 double-precision floating-point multiplier for denormalized and normalized floating-point numbers Application-set driven exploration for custom processor architectures Stochastic circuit design and performance evaluation of vector quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1