Yu Yang, Zhulin An, Yongjun Xu, Xiaowei Li, Canfeng Chen
Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.
{"title":"Passive Loss Inference in Wireless Sensor Networks Using EM Algorithm","authors":"Yu Yang, Zhulin An, Yongjun Xu, Xiaowei Li, Canfeng Chen","doi":"10.4236/wsn.201027063","DOIUrl":"https://doi.org/10.4236/wsn.201027063","url":null,"abstract":"Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117327838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.
{"title":"Contention-Based Beaconless Real-Time Routing Protocol for Wireless Sensor Networks","authors":"Chao-Ying Huang, Guoli Wang","doi":"10.4236/wsn.201027065","DOIUrl":"https://doi.org/10.4236/wsn.201027065","url":null,"abstract":"This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130931638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannan Xiao, Ying Zhang, J. Malcolm, B. Christianson, K. Chua
Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is ?xed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases ?rst, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation results.
{"title":"Modelling and Analysis of TCP Performance in Wireless Multihop Networks","authors":"Hannan Xiao, Ying Zhang, J. Malcolm, B. Christianson, K. Chua","doi":"10.4236/wsn.201027061","DOIUrl":"https://doi.org/10.4236/wsn.201027061","url":null,"abstract":"Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is ?xed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases ?rst, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation results.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129661251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present the classification and review of security schemes in mobile computing system. We classify these schemes based on types the infrastructure used in the mobile computing system-Mobile Ad Hoc Networks (MANET) and Mobile Agent model. Mobile Ad Hoc Networks are pervasive, ubiquitous and without any centralized authority. These unique characteristics, combined with ever-increasing security threats, demand solutions in securing ad hoc networks prior to their deployment in commercial and military applications. This paper reviews the prevailing mobile ad hoc network security threats, the existing solution schemes, their limitations and open research issues. We also explain the Intrusion detection and response technique as an alternate method to protect the MANET based mobile computing systems and their approaches. A literature review of important existing Intrusion Detection approaches and Intrusion Response Approaches for MANET is also presented. This paper also presents the limitations of existing Intrusion Detection and Response Approaches for MANET and open research issues in providing MANET security. With respect to Mobile Agent based mobile computing system, we have presented the classification of various types of security attacks in Mobile Agent based model and presented the security solutions for those type of attacks proposed by the various schemes and the open research issues in providing security for Mobile Agent based mobile computing system. Such classification enhances the understanding of the proposed security schemes in the mobile computing system, assists in the development and enhancement of schemes in the future and helps in choosing an appropriate scheme while implementing a mobile computing system.
{"title":"Classification and Review of Security Schemes in Mobile Computing","authors":"Sathish A. P. Kumar","doi":"10.4236/wsn.2010.26054","DOIUrl":"https://doi.org/10.4236/wsn.2010.26054","url":null,"abstract":"In this paper, we present the classification and review of security schemes in mobile computing system. We classify these schemes based on types the infrastructure used in the mobile computing system-Mobile Ad Hoc Networks (MANET) and Mobile Agent model. Mobile Ad Hoc Networks are pervasive, ubiquitous and without any centralized authority. These unique characteristics, combined with ever-increasing security threats, demand solutions in securing ad hoc networks prior to their deployment in commercial and military applications. This paper reviews the prevailing mobile ad hoc network security threats, the existing solution schemes, their limitations and open research issues. We also explain the Intrusion detection and response technique as an alternate method to protect the MANET based mobile computing systems and their approaches. A literature review of important existing Intrusion Detection approaches and Intrusion Response Approaches for MANET is also presented. This paper also presents the limitations of existing Intrusion Detection and Response Approaches for MANET and open research issues in providing MANET security. With respect to Mobile Agent based mobile computing system, we have presented the classification of various types of security attacks in Mobile Agent based model and presented the security solutions for those type of attacks proposed by the various schemes and the open research issues in providing security for Mobile Agent based mobile computing system. Such classification enhances the understanding of the proposed security schemes in the mobile computing system, assists in the development and enhancement of schemes in the future and helps in choosing an appropriate scheme while implementing a mobile computing system.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115990559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computations and communications. Research in WSNs has become an extensive explorative area during the last few years, especially due to the challenges offered, energy constraints of the sensors being one of them. In this paper, a thorough comprehensive study of the energy conservation challenges in wireless sensor networks is carried out. The need for effective utilization of limited power resources is also emphasized, which becomes pre-eminent to the Wireless Sensor Networks.
{"title":"Energy Conservation Challenges in Wireless Sensor Networks: A Comprehensive Study","authors":"S. Tarannum","doi":"10.4236/wsn.2010.26060","DOIUrl":"https://doi.org/10.4236/wsn.2010.26060","url":null,"abstract":"A Wireless Sensor Network (WSN) consists of a large number of randomly deployed sensor nodes. These sensor nodes organize themselves into a cooperative network and perform the three basic functions of sensing, computations and communications. Research in WSNs has become an extensive explorative area during the last few years, especially due to the challenges offered, energy constraints of the sensors being one of them. In this paper, a thorough comprehensive study of the energy conservation challenges in wireless sensor networks is carried out. The need for effective utilization of limited power resources is also emphasized, which becomes pre-eminent to the Wireless Sensor Networks.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128726234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Measurement and reconstruction of wireless pulses is an important scheme in wireless ultra wide band (UWB) technology. In contrary to the band-limited analog signals, which can be recovered from evenly spaced samples, the reconstruction of the UWB pulses is a more demanding task. In this work we describe an exponential sampling filter (ESF) for measurement and reconstruction of UWB pulses. The ESF is constructed from parallel filters, which has exponentially descending impulse response. A pole cancellation filter was used to extract the amplitudes and time locations of the UWB pulses from sequentially measured samples of the ESF output. We show that the amplitudes and time locations of p sequential UWB pulses can be recovered from the measurement of at least 2p samples from the ESF output. For perfect reconstruction the number of parallel filters in ESP should be 2p. We study the robustness of the method against noise and discuss the applications of the method.
{"title":"Reconstruction of Wireless UWB Pulses by Exponential Sampling Filter","authors":"J. Olkkonen, H. Olkkonen","doi":"10.4236/wsn.2010.26057","DOIUrl":"https://doi.org/10.4236/wsn.2010.26057","url":null,"abstract":"Measurement and reconstruction of wireless pulses is an important scheme in wireless ultra wide band (UWB) technology. In contrary to the band-limited analog signals, which can be recovered from evenly spaced samples, the reconstruction of the UWB pulses is a more demanding task. In this work we describe an exponential sampling filter (ESF) for measurement and reconstruction of UWB pulses. The ESF is constructed from parallel filters, which has exponentially descending impulse response. A pole cancellation filter was used to extract the amplitudes and time locations of the UWB pulses from sequentially measured samples of the ESF output. We show that the amplitudes and time locations of p sequential UWB pulses can be recovered from the measurement of at least 2p samples from the ESF output. For perfect reconstruction the number of parallel filters in ESP should be 2p. We study the robustness of the method against noise and discuss the applications of the method.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134200278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
{"title":"Interference Management for DS-CDMA Systems through Closed-Loop Power Control, Base Station Assignment, and Beamforming","authors":"M. D. Moghadam, H. Bakhshi, G. Dadashzadeh","doi":"10.4236/wsn.2010.26059","DOIUrl":"https://doi.org/10.4236/wsn.2010.26059","url":null,"abstract":"In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"297 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122156257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inter-node trust relation is established after an overall evaluation of node trust value based on the monitor results of the node packets forwarding behavior conducted by inter-node collaboration. Due to the node energy limitation in wireless sensor networks, energy load balancing mechanism is applied to prolong the node survival time. And the redundant routing protocol involves the presented trust model to develop the novel trust routing protocol of beta trust model based on energy load balancing. Simulation performance demonstrates that the beta trust model based on energy load balancing outperforms current schemes in energy consumption.
{"title":"Research on Beta Trust Model of Wireless Sensor Networks Based on Energy Load Balancing","authors":"Danwei Chen, X. Yu, Xianghui Dong","doi":"10.4236/wsn.2010.24049","DOIUrl":"https://doi.org/10.4236/wsn.2010.24049","url":null,"abstract":"This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inter-node trust relation is established after an overall evaluation of node trust value based on the monitor results of the node packets forwarding behavior conducted by inter-node collaboration. Due to the node energy limitation in wireless sensor networks, energy load balancing mechanism is applied to prolong the node survival time. And the redundant routing protocol involves the presented trust model to develop the novel trust routing protocol of beta trust model based on energy load balancing. Simulation performance demonstrates that the beta trust model based on energy load balancing outperforms current schemes in energy consumption.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130678638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.
{"title":"A New Method to Improve Performance of Cooperative Underwater Acoustic Wireless Sensor Networks via Frequency Controlled Transmission Based on Length of Data Links","authors":"V. Vakili, M. Jannati","doi":"10.4236/wsn.2010.24050","DOIUrl":"https://doi.org/10.4236/wsn.2010.24050","url":null,"abstract":"In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123636078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The challenging conditions prevalent in indoor environments have rendered many traditional positioning methods inept to yield satisfactory results. Our work tackles the challenging problem of accurate indoor positioning in hazardous multipath environments through three versatile super resolution techniques: time domain Multiple Signal Classification (TD-MUSIC), frequency domain MUSIC (FD-MUSIC) algorithms, and frequency domain Eigen value (FD-EV) method. The advantage of using these super resolution techniques is twofold. First for Line-of-Sight (LoS) conditions this provides the most accurate means of determining the time delay estimate from transmitter to receiver for any wireless sensor network. The high noise immunity and resolvability of these methods makes them ideal for cost-effective wireless sensor networks operating in indoor channels. Second for non-LoS conditions the resultant pseudo-spectrum generated by these methods provides the means to construct the ideal location based fingerprint. We provide an in depth analysis of limitation as well as advantages inherent in all of these methods through a detailed behavioral analysis under constrained environments. Hence, the bandwidth versatility, higher resolution capability and higher noise immunity of the TD-MUSIC algorithm and the FD-EV method’s ability to resurface submerged signal peaks when the signal subspace dimensions are underestimated are all presented in detail.
{"title":"Robust Techniques for Accurate Indoor Localization in Hazardous Environments","authors":"G. Godaliyadda, H. K. Garg","doi":"10.4236/wsn.2010.24051","DOIUrl":"https://doi.org/10.4236/wsn.2010.24051","url":null,"abstract":"The challenging conditions prevalent in indoor environments have rendered many traditional positioning methods inept to yield satisfactory results. Our work tackles the challenging problem of accurate indoor positioning in hazardous multipath environments through three versatile super resolution techniques: time domain Multiple Signal Classification (TD-MUSIC), frequency domain MUSIC (FD-MUSIC) algorithms, and frequency domain Eigen value (FD-EV) method. The advantage of using these super resolution techniques is twofold. First for Line-of-Sight (LoS) conditions this provides the most accurate means of determining the time delay estimate from transmitter to receiver for any wireless sensor network. The high noise immunity and resolvability of these methods makes them ideal for cost-effective wireless sensor networks operating in indoor channels. Second for non-LoS conditions the resultant pseudo-spectrum generated by these methods provides the means to construct the ideal location based fingerprint. We provide an in depth analysis of limitation as well as advantages inherent in all of these methods through a detailed behavioral analysis under constrained environments. Hence, the bandwidth versatility, higher resolution capability and higher noise immunity of the TD-MUSIC algorithm and the FD-EV method’s ability to resurface submerged signal peaks when the signal subspace dimensions are underestimated are all presented in detail.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123554579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}