Kathleen L. Miller , Yi Xiang , Claire Yu , Jacob Pustelnik , Jerry Wu , Xinyue Ma , Toshikatsu Matsui , Kenichi Imahashi , Shaochen Chen
{"title":"用于高通量药物测试的人类ipsc来源的心脏微组织的快速3D生物打印","authors":"Kathleen L. Miller , Yi Xiang , Claire Yu , Jacob Pustelnik , Jerry Wu , Xinyue Ma , Toshikatsu Matsui , Kenichi Imahashi , Shaochen Chen","doi":"10.1016/j.ooc.2021.100007","DOIUrl":null,"url":null,"abstract":"<div><p>With cardiac disease a reigning problem in the world, the need for accurate and high-throughput drug testing is paramount. 3D cardiac tissues are promising models, as they can recapitulate the cell-cell, cell-matrix, and cell-tissue interactions that impact response to a drug. Using an in-house developed micro-continuous optical printing system, we created a cardiac micro-tissue in mere seconds with microscale alignment cues in a hydrogel scaffold that is small enough to fit in a 96-well plate. The 3D printed, asymmetric, cantilever-based tissue scaffold allows one to directly measure the deformation produced by the beating micro-tissue. After 7 days, the micro-tissue exhibited a high level of sarcomere organization and a significant increase in maturity marker expression. The cardiac micro-tissues were validated against two representative drugs, isoproterenol and verapamil at various doses, showing corresponding and measurable changes in beating frequency and displacement. Such rapidly bioprinted cardiac micro-tissues in a multi-well plate offer a promising solution for high-throughput screening in drug discovery.</p></div>","PeriodicalId":74371,"journal":{"name":"Organs-on-a-chip","volume":"3 ","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ooc.2021.100007","citationCount":"16","resultStr":"{\"title\":\"Rapid 3D BioPrinting of a human iPSC-derived cardiac micro-tissue for high-throughput drug testing\",\"authors\":\"Kathleen L. Miller , Yi Xiang , Claire Yu , Jacob Pustelnik , Jerry Wu , Xinyue Ma , Toshikatsu Matsui , Kenichi Imahashi , Shaochen Chen\",\"doi\":\"10.1016/j.ooc.2021.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With cardiac disease a reigning problem in the world, the need for accurate and high-throughput drug testing is paramount. 3D cardiac tissues are promising models, as they can recapitulate the cell-cell, cell-matrix, and cell-tissue interactions that impact response to a drug. Using an in-house developed micro-continuous optical printing system, we created a cardiac micro-tissue in mere seconds with microscale alignment cues in a hydrogel scaffold that is small enough to fit in a 96-well plate. The 3D printed, asymmetric, cantilever-based tissue scaffold allows one to directly measure the deformation produced by the beating micro-tissue. After 7 days, the micro-tissue exhibited a high level of sarcomere organization and a significant increase in maturity marker expression. The cardiac micro-tissues were validated against two representative drugs, isoproterenol and verapamil at various doses, showing corresponding and measurable changes in beating frequency and displacement. Such rapidly bioprinted cardiac micro-tissues in a multi-well plate offer a promising solution for high-throughput screening in drug discovery.</p></div>\",\"PeriodicalId\":74371,\"journal\":{\"name\":\"Organs-on-a-chip\",\"volume\":\"3 \",\"pages\":\"Article 100007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ooc.2021.100007\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organs-on-a-chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666102021000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organs-on-a-chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666102021000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid 3D BioPrinting of a human iPSC-derived cardiac micro-tissue for high-throughput drug testing
With cardiac disease a reigning problem in the world, the need for accurate and high-throughput drug testing is paramount. 3D cardiac tissues are promising models, as they can recapitulate the cell-cell, cell-matrix, and cell-tissue interactions that impact response to a drug. Using an in-house developed micro-continuous optical printing system, we created a cardiac micro-tissue in mere seconds with microscale alignment cues in a hydrogel scaffold that is small enough to fit in a 96-well plate. The 3D printed, asymmetric, cantilever-based tissue scaffold allows one to directly measure the deformation produced by the beating micro-tissue. After 7 days, the micro-tissue exhibited a high level of sarcomere organization and a significant increase in maturity marker expression. The cardiac micro-tissues were validated against two representative drugs, isoproterenol and verapamil at various doses, showing corresponding and measurable changes in beating frequency and displacement. Such rapidly bioprinted cardiac micro-tissues in a multi-well plate offer a promising solution for high-throughput screening in drug discovery.