Amélie Cabirol, Silvia Moriano-Gutierrez, Philipp Engel
{"title":"蜜蜂肠道微生物群对神经活性代谢物的调节作用","authors":"Amélie Cabirol, Silvia Moriano-Gutierrez, Philipp Engel","doi":"10.1111/mmi.15167","DOIUrl":null,"url":null,"abstract":"<p><p>Honey bees have emerged as a new model to study the gut-brain axis, as they exhibit complex social behaviors and cognitive abilities, while experiments with gnotobiotic bees have revealed that their gut microbiota alters both brain and behavioral phenotypes. Furthermore, while honey bee brain functions supporting a broad range of behaviors have been intensively studied for over 50 years, the gut microbiota of bees has been experimentally characterized only recently. Here, we combined six published datasets from metabolomic analyses to provide an overview of the neuroactive metabolites whose abundance in the gut, hemolymph and brain varies in presence of the gut microbiota. Such metabolites may either be produced by gut bacteria, released from the pollen grains during their decomposition by bacteria, or produced by other organs in response to different bacterial products. We describe the current state of knowledge regarding the impact of such metabolites on brain function and behavior and provide further hypotheses to explore in this emerging field of research.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"284-293"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroactive metabolites modulated by the gut microbiota in honey bees.\",\"authors\":\"Amélie Cabirol, Silvia Moriano-Gutierrez, Philipp Engel\",\"doi\":\"10.1111/mmi.15167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey bees have emerged as a new model to study the gut-brain axis, as they exhibit complex social behaviors and cognitive abilities, while experiments with gnotobiotic bees have revealed that their gut microbiota alters both brain and behavioral phenotypes. Furthermore, while honey bee brain functions supporting a broad range of behaviors have been intensively studied for over 50 years, the gut microbiota of bees has been experimentally characterized only recently. Here, we combined six published datasets from metabolomic analyses to provide an overview of the neuroactive metabolites whose abundance in the gut, hemolymph and brain varies in presence of the gut microbiota. Such metabolites may either be produced by gut bacteria, released from the pollen grains during their decomposition by bacteria, or produced by other organs in response to different bacterial products. We describe the current state of knowledge regarding the impact of such metabolites on brain function and behavior and provide further hypotheses to explore in this emerging field of research.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\" \",\"pages\":\"284-293\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.15167\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15167","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neuroactive metabolites modulated by the gut microbiota in honey bees.
Honey bees have emerged as a new model to study the gut-brain axis, as they exhibit complex social behaviors and cognitive abilities, while experiments with gnotobiotic bees have revealed that their gut microbiota alters both brain and behavioral phenotypes. Furthermore, while honey bee brain functions supporting a broad range of behaviors have been intensively studied for over 50 years, the gut microbiota of bees has been experimentally characterized only recently. Here, we combined six published datasets from metabolomic analyses to provide an overview of the neuroactive metabolites whose abundance in the gut, hemolymph and brain varies in presence of the gut microbiota. Such metabolites may either be produced by gut bacteria, released from the pollen grains during their decomposition by bacteria, or produced by other organs in response to different bacterial products. We describe the current state of knowledge regarding the impact of such metabolites on brain function and behavior and provide further hypotheses to explore in this emerging field of research.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.