史丹:一种概率编程语言。

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2017-01-01 DOI:10.18637/jss.v076.i01
Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, Allen Riddell
{"title":"史丹:一种概率编程语言。","authors":"Bob Carpenter,&nbsp;Andrew Gelman,&nbsp;Matthew D Hoffman,&nbsp;Daniel Lee,&nbsp;Ben Goodrich,&nbsp;Michael Betancourt,&nbsp;Marcus A Brubaker,&nbsp;Jiqiang Guo,&nbsp;Peter Li,&nbsp;Allen Riddell","doi":"10.18637/jss.v076.i01","DOIUrl":null,"url":null,"abstract":"<p><p>Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the <b>cmdstan</b> package, through R using the <b>rstan</b> package, and through Python using the <b>pystan</b> package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. <b>rstan</b> and <b>pystan</b> also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.</p>","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"76 ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788645/pdf/nihms-1811392.pdf","citationCount":"5441","resultStr":"{\"title\":\"Stan: A Probabilistic Programming Language.\",\"authors\":\"Bob Carpenter,&nbsp;Andrew Gelman,&nbsp;Matthew D Hoffman,&nbsp;Daniel Lee,&nbsp;Ben Goodrich,&nbsp;Michael Betancourt,&nbsp;Marcus A Brubaker,&nbsp;Jiqiang Guo,&nbsp;Peter Li,&nbsp;Allen Riddell\",\"doi\":\"10.18637/jss.v076.i01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the <b>cmdstan</b> package, through R using the <b>rstan</b> package, and through Python using the <b>pystan</b> package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. <b>rstan</b> and <b>pystan</b> also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.</p>\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"76 \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788645/pdf/nihms-1811392.pdf\",\"citationCount\":\"5441\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v076.i01\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v076.i01","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5441

摘要

Stan是一种用于指定统计模型的概率编程语言。Stan程序命令式地在以指定数据和常数为条件的参数上定义对数概率函数。从2.14.0版本开始,Stan通过马尔可夫链蒙特卡罗方法为连续变量模型提供了完整的贝叶斯推理,例如No-U-Turn采样器,这是哈密顿蒙特卡罗采样的一种自适应形式。惩罚的最大似然估计使用优化方法计算,如有限内存Broyden-Fletcher-Goldfarb-Shanno算法。Stan也是一个计算对数密度及其梯度和Hessians的平台,可用于其他算法,如变分贝叶斯,期望传播和使用近似积分的边际推理。为此,Stan的设置使密度、梯度和Hessians以及算法的中间量(如接受概率)易于访问。可以使用cmdstan包从命令行调用Stan,通过R使用rstan包,通过Python使用pystan包。所有三个接口都支持基于诊断和后验分析的采样和优化推理。rstan和pystan还提供对对数概率、梯度、Hessians、参数变换和专门绘图的访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stan: A Probabilistic Programming Language.

Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1