Alex Ranieri Jerônimo Lima, Herbert Guimarães de Sousa Silva, Saloe Poubel, Juliana Nunes Rosón, Loyze Paola Oliveira de Lima, Héllida Marina Costa-Silva, Camila Silva Gonçalves, Pedro A F Galante, Fabiola Holetz, Maria Cristina Machado Motta, Ariel M Silber, M Carolina Elias, Julia Pinheiro Chagas da Cunha
{"title":"克氏锥虫生命形式的开放染色质分析强调了基因组区室和tDNA位点发育调节的关键差异。","authors":"Alex Ranieri Jerônimo Lima, Herbert Guimarães de Sousa Silva, Saloe Poubel, Juliana Nunes Rosón, Loyze Paola Oliveira de Lima, Héllida Marina Costa-Silva, Camila Silva Gonçalves, Pedro A F Galante, Fabiola Holetz, Maria Cristina Machado Motta, Ariel M Silber, M Carolina Elias, Julia Pinheiro Chagas da Cunha","doi":"10.1186/s13072-022-00450-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood.</p><p><strong>Results: </strong>Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels.</p><p><strong>Conclusion: </strong>Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"15 1","pages":"22"},"PeriodicalIF":4.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9158160/pdf/","citationCount":"5","resultStr":"{\"title\":\"Open chromatin analysis in Trypanosoma cruzi life forms highlights critical differences in genomic compartments and developmental regulation at tDNA loci.\",\"authors\":\"Alex Ranieri Jerônimo Lima, Herbert Guimarães de Sousa Silva, Saloe Poubel, Juliana Nunes Rosón, Loyze Paola Oliveira de Lima, Héllida Marina Costa-Silva, Camila Silva Gonçalves, Pedro A F Galante, Fabiola Holetz, Maria Cristina Machado Motta, Ariel M Silber, M Carolina Elias, Julia Pinheiro Chagas da Cunha\",\"doi\":\"10.1186/s13072-022-00450-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood.</p><p><strong>Results: </strong>Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels.</p><p><strong>Conclusion: </strong>Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"15 1\",\"pages\":\"22\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9158160/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-022-00450-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-022-00450-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Open chromatin analysis in Trypanosoma cruzi life forms highlights critical differences in genomic compartments and developmental regulation at tDNA loci.
Background: Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood.
Results: Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels.
Conclusion: Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.