ComDia+:一个用于比较、诊断和改进多类分类器的交互式可视化分析系统

Chanhee Park, Jina Lee, Hyunwoo Han, Kyungwon Lee
{"title":"ComDia+:一个用于比较、诊断和改进多类分类器的交互式可视化分析系统","authors":"Chanhee Park, Jina Lee, Hyunwoo Han, Kyungwon Lee","doi":"10.1109/PacificVis.2019.00044","DOIUrl":null,"url":null,"abstract":"Performance analysis is essential for improving classification models. However, existing performance analysis tools do not provide actionable insights such as the cause of misclassification. Machine learning practitioners face difficulties such as prioritizing model, looking over confusion between classes. In addition, existing performance analysis tools that provide feature-level analysis are difficult to apply to image classification problems. This study has been proposed to solve these difficulties. In this paper, we present an interactive visual analytics system for diagnosing the performance of multiclass classification models. Our system is able to compare multiple models, find weaknesses, and obtain actionable insights for improving models. Our visualization consists of three views for analyzing performance at the class, confusion, and instance levels. We demonstrate our system using MNIST handwritten digits data.","PeriodicalId":208856,"journal":{"name":"2019 IEEE Pacific Visualization Symposium (PacificVis)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ComDia+: An Interactive Visual Analytics System for Comparing, Diagnosing, and Improving Multiclass Classifiers\",\"authors\":\"Chanhee Park, Jina Lee, Hyunwoo Han, Kyungwon Lee\",\"doi\":\"10.1109/PacificVis.2019.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance analysis is essential for improving classification models. However, existing performance analysis tools do not provide actionable insights such as the cause of misclassification. Machine learning practitioners face difficulties such as prioritizing model, looking over confusion between classes. In addition, existing performance analysis tools that provide feature-level analysis are difficult to apply to image classification problems. This study has been proposed to solve these difficulties. In this paper, we present an interactive visual analytics system for diagnosing the performance of multiclass classification models. Our system is able to compare multiple models, find weaknesses, and obtain actionable insights for improving models. Our visualization consists of three views for analyzing performance at the class, confusion, and instance levels. We demonstrate our system using MNIST handwritten digits data.\",\"PeriodicalId\":208856,\"journal\":{\"name\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis.2019.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

性能分析对于改进分类模型至关重要。然而,现有的性能分析工具不能提供可操作的见解,比如错误分类的原因。机器学习从业者面临着诸如优先考虑模型,查看类之间的混淆等困难。此外,现有提供特征级分析的性能分析工具难以应用于图像分类问题。本研究就是为了解决这些困难而提出的。本文提出了一种用于多类分类模型性能诊断的交互式可视化分析系统。我们的系统能够比较多个模型,找到弱点,并获得改进模型的可操作的见解。我们的可视化包括三个视图,用于分析类、混淆和实例级别的性能。我们使用MNIST手写数字数据来演示我们的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ComDia+: An Interactive Visual Analytics System for Comparing, Diagnosing, and Improving Multiclass Classifiers
Performance analysis is essential for improving classification models. However, existing performance analysis tools do not provide actionable insights such as the cause of misclassification. Machine learning practitioners face difficulties such as prioritizing model, looking over confusion between classes. In addition, existing performance analysis tools that provide feature-level analysis are difficult to apply to image classification problems. This study has been proposed to solve these difficulties. In this paper, we present an interactive visual analytics system for diagnosing the performance of multiclass classification models. Our system is able to compare multiple models, find weaknesses, and obtain actionable insights for improving models. Our visualization consists of three views for analyzing performance at the class, confusion, and instance levels. We demonstrate our system using MNIST handwritten digits data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analysis of Ligand Trajectories in Molecular Dynamics Object-in-Hand Feature Displacement with Physically-Based Deformation Visual Exploration of Circulation Rolls in Convective Heat Flows Analysis of Coupled Thermo-Hydro-Mechanical Simulations of a Generic Nuclear Waste Repository in Clay Rock Using Fiber Surfaces Space-Time Slicing: Visualizing Object Detector Performance in Driving Video Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1