基于加权核的室内无线网络传感器分区分层分类方法

D. Alshamaa, F. Mourad, P. Honeine
{"title":"基于加权核的室内无线网络传感器分区分层分类方法","authors":"D. Alshamaa, F. Mourad, P. Honeine","doi":"10.1109/SPAWC.2018.8445918","DOIUrl":null,"url":null,"abstract":"This paper presents a solution for localization of sensors by zoning, in indoor wireless networks. The problem is tackled by a classification technique, where the objective is to classify the zone of the mobile sensor for any observation. The method is hierarchical and uses the belief functions theory to assign confidence levels for zones. For this purpose, kernel density estimation is used first to model the features observations. The algorithm then uses hierarchical clustering and similarity divergence, creating a two-level hierarchy, to reduce the number of zones to be classified at a time. At each level of the hierarchy, a feature selection technique is carried to optimize the misclassification rate and feature redundancy. Experiments are realized in a wireless sensor network to evaluate the performance of the proposed method.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Weighted Kernel-Based Hierarchical Classification Method for Zoning of Sensors in Indoor Wireless Networks\",\"authors\":\"D. Alshamaa, F. Mourad, P. Honeine\",\"doi\":\"10.1109/SPAWC.2018.8445918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a solution for localization of sensors by zoning, in indoor wireless networks. The problem is tackled by a classification technique, where the objective is to classify the zone of the mobile sensor for any observation. The method is hierarchical and uses the belief functions theory to assign confidence levels for zones. For this purpose, kernel density estimation is used first to model the features observations. The algorithm then uses hierarchical clustering and similarity divergence, creating a two-level hierarchy, to reduce the number of zones to be classified at a time. At each level of the hierarchy, a feature selection technique is carried to optimize the misclassification rate and feature redundancy. Experiments are realized in a wireless sensor network to evaluate the performance of the proposed method.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种室内无线网络中传感器分区定位的解决方案。这个问题是通过一种分类技术来解决的,其目标是对移动传感器的区域进行分类。该方法是分层的,并使用信念函数理论来分配区域的置信水平。为此,首先使用核密度估计对特征观测进行建模。然后,该算法使用分层聚类和相似性散度,创建一个两级层次结构,以减少一次需要分类的区域数量。在每个层次上,采用特征选择技术来优化错误分类率和特征冗余度。在无线传感器网络中进行了实验,以评估所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Weighted Kernel-Based Hierarchical Classification Method for Zoning of Sensors in Indoor Wireless Networks
This paper presents a solution for localization of sensors by zoning, in indoor wireless networks. The problem is tackled by a classification technique, where the objective is to classify the zone of the mobile sensor for any observation. The method is hierarchical and uses the belief functions theory to assign confidence levels for zones. For this purpose, kernel density estimation is used first to model the features observations. The algorithm then uses hierarchical clustering and similarity divergence, creating a two-level hierarchy, to reduce the number of zones to be classified at a time. At each level of the hierarchy, a feature selection technique is carried to optimize the misclassification rate and feature redundancy. Experiments are realized in a wireless sensor network to evaluate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1