基于小波变换多尺度积的前列腺超声图像降噪

Fangwei Zhao, C. Desilva
{"title":"基于小波变换多尺度积的前列腺超声图像降噪","authors":"Fangwei Zhao, C. Desilva","doi":"10.1109/ANZIIS.2001.974048","DOIUrl":null,"url":null,"abstract":"A noise reduction scheme based on multi-scale products of the dyadic discrete wavelet transform is proposed and a new automatic threshold finding strategy is defined, which assumes no a priori knowledge about the image structure or noise. The preliminary results of applying this scheme to prostate ultrasound images are promising. The important features of the original image are preserved while most of the speckle noise is removed.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise reduction of ultrasound prostate images using multi-scale products of the wavelet transform\",\"authors\":\"Fangwei Zhao, C. Desilva\",\"doi\":\"10.1109/ANZIIS.2001.974048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A noise reduction scheme based on multi-scale products of the dyadic discrete wavelet transform is proposed and a new automatic threshold finding strategy is defined, which assumes no a priori knowledge about the image structure or noise. The preliminary results of applying this scheme to prostate ultrasound images are promising. The important features of the original image are preserved while most of the speckle noise is removed.\",\"PeriodicalId\":383878,\"journal\":{\"name\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZIIS.2001.974048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于二进离散小波变换的多尺度积的降噪方案,并定义了一种新的自动阈值查找策略,该策略不需要先验地了解图像结构或噪声。将该方案应用于前列腺超声图像的初步结果是有希望的。在去除斑点噪声的同时,保留了原始图像的重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise reduction of ultrasound prostate images using multi-scale products of the wavelet transform
A noise reduction scheme based on multi-scale products of the dyadic discrete wavelet transform is proposed and a new automatic threshold finding strategy is defined, which assumes no a priori knowledge about the image structure or noise. The preliminary results of applying this scheme to prostate ultrasound images are promising. The important features of the original image are preserved while most of the speckle noise is removed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1