稀疏约束图的非负矩阵分解聚类

Keyi Chen, Hangjun Che, Xuanhao Yang, Man-Fai Leung
{"title":"稀疏约束图的非负矩阵分解聚类","authors":"Keyi Chen, Hangjun Che, Xuanhao Yang, Man-Fai Leung","doi":"10.1109/ICICIP53388.2021.9642215","DOIUrl":null,"url":null,"abstract":"Graph nonnegative matrix factorization (GNMF) is superior for mining the intrinsic geometric structure embedded in high-dimensional data. As the sparsity of the factorized matrices is crucial for clustering, the l0 norm is commonly used in the formulated optimization problem to enforce the sparseness which makes the problem NP-hard and discontinuous. In this paper, the sparse graph nonnegative matrix factorization (SGNMF) is formulated as a global optimization problem by using the sum of inverted Gaussian functions to approximate the l0 norm, the multiplicative update rules are developed to solve the problem with guaranteed convergence. The superior performance of the proposed approach is substantiated by clustering tests on four public datasets.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparsity-constrained Graph Nonnegative Matrix Factorization for Clustering\",\"authors\":\"Keyi Chen, Hangjun Che, Xuanhao Yang, Man-Fai Leung\",\"doi\":\"10.1109/ICICIP53388.2021.9642215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph nonnegative matrix factorization (GNMF) is superior for mining the intrinsic geometric structure embedded in high-dimensional data. As the sparsity of the factorized matrices is crucial for clustering, the l0 norm is commonly used in the formulated optimization problem to enforce the sparseness which makes the problem NP-hard and discontinuous. In this paper, the sparse graph nonnegative matrix factorization (SGNMF) is formulated as a global optimization problem by using the sum of inverted Gaussian functions to approximate the l0 norm, the multiplicative update rules are developed to solve the problem with guaranteed convergence. The superior performance of the proposed approach is substantiated by clustering tests on four public datasets.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图非负矩阵分解(GNMF)在挖掘高维数据的内在几何结构方面具有优势。由于分解矩阵的稀疏性对聚类至关重要,因此通常在公式化优化问题中使用10范数来增强稀疏性,这使得问题具有np困难和不连续性。本文将稀疏图非负矩阵分解(SGNMF)表述为一个用倒高斯函数和逼近10范数的全局优化问题,并给出了保证收敛的乘法更新规则。通过对四个公共数据集的聚类测试,证明了该方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparsity-constrained Graph Nonnegative Matrix Factorization for Clustering
Graph nonnegative matrix factorization (GNMF) is superior for mining the intrinsic geometric structure embedded in high-dimensional data. As the sparsity of the factorized matrices is crucial for clustering, the l0 norm is commonly used in the formulated optimization problem to enforce the sparseness which makes the problem NP-hard and discontinuous. In this paper, the sparse graph nonnegative matrix factorization (SGNMF) is formulated as a global optimization problem by using the sum of inverted Gaussian functions to approximate the l0 norm, the multiplicative update rules are developed to solve the problem with guaranteed convergence. The superior performance of the proposed approach is substantiated by clustering tests on four public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1