{"title":"STEF在精细并行多线程处理器中的作用","authors":"Yamin Li, Wanming Chu","doi":"10.1109/HPCA.1995.386531","DOIUrl":null,"url":null,"abstract":"The throughput of a multiple-pipelined processor suffers due to lack of sufficient instructions to make multiple pipelines busy and due to delays associated with pipeline dependencies. Finely Parallel Multithreaded Processor (FPMP) architectures try to solve these problems by dispatching multiple instructions from multiple instruction threads in parallel. This paper proposes an analytic model which is used to quantify the advantage of FPMP architectures. The effects of four important parameters in FPMP, S,T,E, and F (STEF) are evaluated. Unlike previous analytic models of multithreaded architecture, the model presented concerns the performance of multiple pipelines. It deals not only with pipelines dependencies but also with structure conflicts. The model accepts the configuration parameters of a FPMP, the distribution of instruction types, and the distribution of interlock delay cycles. The model provides a quick performance prediction and a quick utilization prediction which are helpful in the processor design.<<ETX>>","PeriodicalId":330315,"journal":{"name":"Proceedings of 1995 1st IEEE Symposium on High Performance Computer Architecture","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The effects of STEF in finely parallel multithreaded processors\",\"authors\":\"Yamin Li, Wanming Chu\",\"doi\":\"10.1109/HPCA.1995.386531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The throughput of a multiple-pipelined processor suffers due to lack of sufficient instructions to make multiple pipelines busy and due to delays associated with pipeline dependencies. Finely Parallel Multithreaded Processor (FPMP) architectures try to solve these problems by dispatching multiple instructions from multiple instruction threads in parallel. This paper proposes an analytic model which is used to quantify the advantage of FPMP architectures. The effects of four important parameters in FPMP, S,T,E, and F (STEF) are evaluated. Unlike previous analytic models of multithreaded architecture, the model presented concerns the performance of multiple pipelines. It deals not only with pipelines dependencies but also with structure conflicts. The model accepts the configuration parameters of a FPMP, the distribution of instruction types, and the distribution of interlock delay cycles. The model provides a quick performance prediction and a quick utilization prediction which are helpful in the processor design.<<ETX>>\",\"PeriodicalId\":330315,\"journal\":{\"name\":\"Proceedings of 1995 1st IEEE Symposium on High Performance Computer Architecture\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 1st IEEE Symposium on High Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.1995.386531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 1st IEEE Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.1995.386531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of STEF in finely parallel multithreaded processors
The throughput of a multiple-pipelined processor suffers due to lack of sufficient instructions to make multiple pipelines busy and due to delays associated with pipeline dependencies. Finely Parallel Multithreaded Processor (FPMP) architectures try to solve these problems by dispatching multiple instructions from multiple instruction threads in parallel. This paper proposes an analytic model which is used to quantify the advantage of FPMP architectures. The effects of four important parameters in FPMP, S,T,E, and F (STEF) are evaluated. Unlike previous analytic models of multithreaded architecture, the model presented concerns the performance of multiple pipelines. It deals not only with pipelines dependencies but also with structure conflicts. The model accepts the configuration parameters of a FPMP, the distribution of instruction types, and the distribution of interlock delay cycles. The model provides a quick performance prediction and a quick utilization prediction which are helpful in the processor design.<>