{"title":"基于小波图像去噪的近似信息传递压缩成像","authors":"Jin Tan, Yanting Ma, D. Baron","doi":"10.1109/GlobalSIP.2014.7032152","DOIUrl":null,"url":null,"abstract":"We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over current state of the art compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose a compressive imaging algorithm that employs the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising of noisy signals. In this work, we apply an adaptive Wiener filter, which is a wavelet-based image denoiser, within AMP. Numerical results show that the proposed algorithm improves over the state of the art in both reconstruction error and runtime.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressive imaging via approximate message passing with wavelet-based image denoising\",\"authors\":\"Jin Tan, Yanting Ma, D. Baron\",\"doi\":\"10.1109/GlobalSIP.2014.7032152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over current state of the art compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose a compressive imaging algorithm that employs the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising of noisy signals. In this work, we apply an adaptive Wiener filter, which is a wavelet-based image denoiser, within AMP. Numerical results show that the proposed algorithm improves over the state of the art in both reconstruction error and runtime.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressive imaging via approximate message passing with wavelet-based image denoising
We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over current state of the art compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose a compressive imaging algorithm that employs the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising of noisy signals. In this work, we apply an adaptive Wiener filter, which is a wavelet-based image denoiser, within AMP. Numerical results show that the proposed algorithm improves over the state of the art in both reconstruction error and runtime.