基于小波图像去噪的近似信息传递压缩成像

Jin Tan, Yanting Ma, D. Baron
{"title":"基于小波图像去噪的近似信息传递压缩成像","authors":"Jin Tan, Yanting Ma, D. Baron","doi":"10.1109/GlobalSIP.2014.7032152","DOIUrl":null,"url":null,"abstract":"We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over current state of the art compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose a compressive imaging algorithm that employs the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising of noisy signals. In this work, we apply an adaptive Wiener filter, which is a wavelet-based image denoiser, within AMP. Numerical results show that the proposed algorithm improves over the state of the art in both reconstruction error and runtime.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressive imaging via approximate message passing with wavelet-based image denoising\",\"authors\":\"Jin Tan, Yanting Ma, D. Baron\",\"doi\":\"10.1109/GlobalSIP.2014.7032152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over current state of the art compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose a compressive imaging algorithm that employs the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising of noisy signals. In this work, we apply an adaptive Wiener filter, which is a wavelet-based image denoiser, within AMP. Numerical results show that the proposed algorithm improves over the state of the art in both reconstruction error and runtime.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑压缩成像问题,其中图像是从减少的线性测量重建。我们的目标是在重建误差和运行时间方面改进当前最先进的压缩成像算法。为了实现我们的目标,我们提出了一种采用近似消息传递(AMP)框架的压缩成像算法。AMP是一种对噪声信号进行标量去噪的迭代信号重构算法。在这项工作中,我们在AMP中应用了一种自适应维纳滤波器,这是一种基于小波的图像去噪器。数值结果表明,所提出的算法在重建误差和运行时间方面都优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive imaging via approximate message passing with wavelet-based image denoising
We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over current state of the art compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose a compressive imaging algorithm that employs the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising of noisy signals. In this work, we apply an adaptive Wiener filter, which is a wavelet-based image denoiser, within AMP. Numerical results show that the proposed algorithm improves over the state of the art in both reconstruction error and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competitive design of power allocation strategies for energy harvesting wireless communication systems Correction of over-exposure using color channel correlations Communications meets copula modeling: Non-standard dependence features in wireless fading channels Energy efficient and low complex wireless communication Feasibility of positive secrecy rate in wiretap interference channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1