D. Beckingsale, W. Gaudin, Andy Herdman, S. Jarvis
{"title":"基于数千个图形处理单元的驻留块结构自适应网格细化","authors":"D. Beckingsale, W. Gaudin, Andy Herdman, S. Jarvis","doi":"10.1109/ICPP.2015.15","DOIUrl":null,"url":null,"abstract":"Block-structured adaptive mesh refinement (AMR) is a technique that can be used when solving partial differential equations to reduce the number of cells necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a resident GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an 8 node cluster, and 4,196 nodes of Oak Ridge National Laboratory's Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and is scalable on 4,196 K20x GPUs using a combination of MPI and CUDA.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Resident Block-Structured Adaptive Mesh Refinement on Thousands of Graphics Processing Units\",\"authors\":\"D. Beckingsale, W. Gaudin, Andy Herdman, S. Jarvis\",\"doi\":\"10.1109/ICPP.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block-structured adaptive mesh refinement (AMR) is a technique that can be used when solving partial differential equations to reduce the number of cells necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a resident GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an 8 node cluster, and 4,196 nodes of Oak Ridge National Laboratory's Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and is scalable on 4,196 K20x GPUs using a combination of MPI and CUDA.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resident Block-Structured Adaptive Mesh Refinement on Thousands of Graphics Processing Units
Block-structured adaptive mesh refinement (AMR) is a technique that can be used when solving partial differential equations to reduce the number of cells necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a resident GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an 8 node cluster, and 4,196 nodes of Oak Ridge National Laboratory's Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and is scalable on 4,196 K20x GPUs using a combination of MPI and CUDA.