基于分辨率定向优化的分布式传感

R. Vaccaro, P. Boufounos, M. Benosman
{"title":"基于分辨率定向优化的分布式传感","authors":"R. Vaccaro, P. Boufounos, M. Benosman","doi":"10.1137/1.9781611974072.24","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of optimal zone coverage, using distributed sensing, i.e. a group of collaborating sensors. We formulate the problem as an optimization problem with time-varying cost function. We examine the case where a group of elevated imaging sensors look down to and form the map of a 2-dimensional environment at a pre-specified resolution. The sensors solve an optimization problem that attempts to optimize a time-varying cost function. The cost at any time instance measures the distance between the desired resolution function and the achieved resolution until the previous time instant. We discuss the numerical implementation challenges of this approach and demonstrate its performance on a numerical example.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolution-Directed Optimization-based Distributed Sensing\",\"authors\":\"R. Vaccaro, P. Boufounos, M. Benosman\",\"doi\":\"10.1137/1.9781611974072.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the problem of optimal zone coverage, using distributed sensing, i.e. a group of collaborating sensors. We formulate the problem as an optimization problem with time-varying cost function. We examine the case where a group of elevated imaging sensors look down to and form the map of a 2-dimensional environment at a pre-specified resolution. The sensors solve an optimization problem that attempts to optimize a time-varying cost function. The cost at any time instance measures the distance between the desired resolution function and the achieved resolution until the previous time instant. We discuss the numerical implementation challenges of this approach and demonstrate its performance on a numerical example.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用分布式感知,即一组协作传感器,研究了最优区域覆盖问题。我们将该问题表述为具有时变代价函数的优化问题。我们检查的情况下,一组高架成像传感器向下看,并形成一个预先指定的分辨率二维环境的地图。传感器解决了一个优化问题,试图优化时变成本函数。任何时间实例的代价度量期望的分辨率函数与实现的分辨率到前一个时间瞬间之间的距离。我们讨论了该方法的数值实现挑战,并通过一个数值例子证明了它的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resolution-Directed Optimization-based Distributed Sensing
In this paper we study the problem of optimal zone coverage, using distributed sensing, i.e. a group of collaborating sensors. We formulate the problem as an optimization problem with time-varying cost function. We examine the case where a group of elevated imaging sensors look down to and form the map of a 2-dimensional environment at a pre-specified resolution. The sensors solve an optimization problem that attempts to optimize a time-varying cost function. The cost at any time instance measures the distance between the desired resolution function and the achieved resolution until the previous time instant. We discuss the numerical implementation challenges of this approach and demonstrate its performance on a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a minimum L2-norm exact control of the Pauli equation Diffusive Realization of a Lyapunov Equation Solution, and Parallel Algorithms Implementation A Variable Reference Trajectory for Model-Free Glycemia Regulation Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers Identification of the Fragmentation Role in the Amyloid Assembling Processes and Application to their Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1