多目标进化算法解的优势域控制及多目标0/1背包问题的性能分析

Hiroyuki Sato, H. Aguirre, Kiyoshi Tanaka
{"title":"多目标进化算法解的优势域控制及多目标0/1背包问题的性能分析","authors":"Hiroyuki Sato, H. Aguirre, Kiyoshi Tanaka","doi":"10.2197/IPSJDC.3.703","DOIUrl":null,"url":null,"abstract":"This work proposes a method to control the dominance area of solutions in order to induce appropriate ranking of solutions for the problem at hand, enhance selection, and improve the performance of MOEAs on combinatorial optimization problems. The proposed method can control the degree of expansion or contraction of the dominance area of solutions using a user-defined parameter S. Modifying the dominance area of solutions changes their dominance relation inducing a ranking of solutions that is different to conventional dominance. In this work we use 0/1 multiobjective knapsack problems to analyze the effects on solutions ranking caused by contracting and expanding the dominance area of solutions and its impact on the search performance of a multi-objective optimizer when the number of objectives, the size of the search space, and the feasibility of the problems vary. We show that either convergence or diversity can be emphasized by contracting or expanding the dominance area. Also, we show that the optimal value of the area of dominance depends strongly on all factors analyzed here: number of objectives, size of the search space, and feasibility of the problems.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Controlling Dominance Area of Solutions in Multiobjective Evolutionary Algorithms and Performance Analysis on Multiobjective 0/1 Knapsack Problems\",\"authors\":\"Hiroyuki Sato, H. Aguirre, Kiyoshi Tanaka\",\"doi\":\"10.2197/IPSJDC.3.703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a method to control the dominance area of solutions in order to induce appropriate ranking of solutions for the problem at hand, enhance selection, and improve the performance of MOEAs on combinatorial optimization problems. The proposed method can control the degree of expansion or contraction of the dominance area of solutions using a user-defined parameter S. Modifying the dominance area of solutions changes their dominance relation inducing a ranking of solutions that is different to conventional dominance. In this work we use 0/1 multiobjective knapsack problems to analyze the effects on solutions ranking caused by contracting and expanding the dominance area of solutions and its impact on the search performance of a multi-objective optimizer when the number of objectives, the size of the search space, and the feasibility of the problems vary. We show that either convergence or diversity can be emphasized by contracting or expanding the dominance area. Also, we show that the optimal value of the area of dominance depends strongly on all factors analyzed here: number of objectives, size of the search space, and feasibility of the problems.\",\"PeriodicalId\":432390,\"journal\":{\"name\":\"Ipsj Digital Courier\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ipsj Digital Courier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJDC.3.703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种控制解的优势域的方法,以诱导手头问题的解的适当排序,增强选择,提高moea在组合优化问题上的性能。该方法可以通过自定义参数s来控制解的优势区域的扩张或收缩程度。修改解的优势区域会改变它们的优势关系,从而产生不同于传统优势的解排序。本文利用0/1多目标背包问题,分析了当问题的目标数量、搜索空间大小和可行性不同时,解的优势区域收缩和扩大对解排序的影响及其对多目标优化器搜索性能的影响。结果表明,通过缩小或扩大优势域,可以增强收敛性或多样性。此外,我们还表明,支配区域的最优值在很大程度上取决于这里分析的所有因素:目标的数量、搜索空间的大小和问题的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling Dominance Area of Solutions in Multiobjective Evolutionary Algorithms and Performance Analysis on Multiobjective 0/1 Knapsack Problems
This work proposes a method to control the dominance area of solutions in order to induce appropriate ranking of solutions for the problem at hand, enhance selection, and improve the performance of MOEAs on combinatorial optimization problems. The proposed method can control the degree of expansion or contraction of the dominance area of solutions using a user-defined parameter S. Modifying the dominance area of solutions changes their dominance relation inducing a ranking of solutions that is different to conventional dominance. In this work we use 0/1 multiobjective knapsack problems to analyze the effects on solutions ranking caused by contracting and expanding the dominance area of solutions and its impact on the search performance of a multi-objective optimizer when the number of objectives, the size of the search space, and the feasibility of the problems vary. We show that either convergence or diversity can be emphasized by contracting or expanding the dominance area. Also, we show that the optimal value of the area of dominance depends strongly on all factors analyzed here: number of objectives, size of the search space, and feasibility of the problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed-Processing System for Accelerating Biological Research Using Data-Staging A Type System for Dynamic Delimited Continuations A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Peer-to-Peer Multimedia Streaming with Guaranteed QoS for Future Real-time Applications A Benchmark Tool for Network I/O Management Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1