利用参数共享提高多智能体强化学习的可扩展性

Ning Yang, Bo Ding, Peichang Shi, Dawei Feng
{"title":"利用参数共享提高多智能体强化学习的可扩展性","authors":"Ning Yang, Bo Ding, Peichang Shi, Dawei Feng","doi":"10.1109/JCC56315.2022.00013","DOIUrl":null,"url":null,"abstract":"Improving the scalability of a multi-agent system is one of the key challenges for applying reinforcement learning to learn an effective policy. Parameter sharing is a common approach used to improve the efficiency of learning by reducing the volume of policy network parameters that need to be updated. However, sharing parameters also reduces the variance between agents’ policies, which further restricts the diversity of their behaviors. In this paper, we introduce a policy parameter sharing approach, it maintains a policy network for each agent, and only updates one of them. The differentiated behavior of agents is maintained by the policy, while sharing parameters are updated through a soft way. Experiments in foraging scenarios demonstrate that our method can effectively improve the performance and also the scalability of the multi-agent systems.","PeriodicalId":239996,"journal":{"name":"2022 IEEE International Conference on Joint Cloud Computing (JCC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving scalability of multi-agent reinforcement learning with parameters sharing\",\"authors\":\"Ning Yang, Bo Ding, Peichang Shi, Dawei Feng\",\"doi\":\"10.1109/JCC56315.2022.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the scalability of a multi-agent system is one of the key challenges for applying reinforcement learning to learn an effective policy. Parameter sharing is a common approach used to improve the efficiency of learning by reducing the volume of policy network parameters that need to be updated. However, sharing parameters also reduces the variance between agents’ policies, which further restricts the diversity of their behaviors. In this paper, we introduce a policy parameter sharing approach, it maintains a policy network for each agent, and only updates one of them. The differentiated behavior of agents is maintained by the policy, while sharing parameters are updated through a soft way. Experiments in foraging scenarios demonstrate that our method can effectively improve the performance and also the scalability of the multi-agent systems.\",\"PeriodicalId\":239996,\"journal\":{\"name\":\"2022 IEEE International Conference on Joint Cloud Computing (JCC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Joint Cloud Computing (JCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCC56315.2022.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Joint Cloud Computing (JCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCC56315.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高多智能体系统的可扩展性是应用强化学习学习有效策略的关键挑战之一。参数共享是一种常用的方法,通过减少需要更新的策略网络参数的数量来提高学习效率。然而,共享参数也减少了agent之间策略的差异,这进一步限制了agent行为的多样性。本文介绍了一种策略参数共享方法,它为每个代理维护一个策略网络,并且只更新其中一个。通过策略维护代理的差异化行为,同时通过软方式更新共享参数。在觅食场景下的实验表明,该方法可以有效地提高多智能体系统的性能和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving scalability of multi-agent reinforcement learning with parameters sharing
Improving the scalability of a multi-agent system is one of the key challenges for applying reinforcement learning to learn an effective policy. Parameter sharing is a common approach used to improve the efficiency of learning by reducing the volume of policy network parameters that need to be updated. However, sharing parameters also reduces the variance between agents’ policies, which further restricts the diversity of their behaviors. In this paper, we introduce a policy parameter sharing approach, it maintains a policy network for each agent, and only updates one of them. The differentiated behavior of agents is maintained by the policy, while sharing parameters are updated through a soft way. Experiments in foraging scenarios demonstrate that our method can effectively improve the performance and also the scalability of the multi-agent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-stage Scheduling of Stream Computing for Industrial Cloud-edge Collaboration Threshold Based Load Balancing Algorithm in Cloud Computing Improving scalability of multi-agent reinforcement learning with parameters sharing MicroStream: A Distributed In-memory Caching Service For Data Production Towards A Secure Joint Cloud With Confidential Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1