动态串扰避免的内置预测器

Rezgar Sadeghi, Z. Navabi
{"title":"动态串扰避免的内置预测器","authors":"Rezgar Sadeghi, Z. Navabi","doi":"10.1109/ETS48528.2020.9131576","DOIUrl":null,"url":null,"abstract":"In very deep sub-micrometer technology nodes, signal integrity of interconnects has been drastically jeopardized by crosstalk noise. To make a communication link reliable against crosstalk faults, different detection, correction, and avoidance methods have been proposed at the cost of redundant spatial and information overheads. In this paper, we propose a crosstalk prediction hardware based on an abstract model deduced from low-level interconnect evaluation for new technologies. This predictor monitors the data pattern to be sent through a communication bus and predicts those likely subjected to the crosstalk fault. Thus, to prevent crosstalk faults, the predictor dynamically engages an avoidance or detection mechanism. Top-level buses are the target of the proposed method. Simulation results reveal that the proposed communication channel is more efficient in terms of crosstalk alleviation as well as area and performance overhead compared to the state of the art reliability methods.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Built-In Predictors for Dynamic Crosstalk Avoidance\",\"authors\":\"Rezgar Sadeghi, Z. Navabi\",\"doi\":\"10.1109/ETS48528.2020.9131576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In very deep sub-micrometer technology nodes, signal integrity of interconnects has been drastically jeopardized by crosstalk noise. To make a communication link reliable against crosstalk faults, different detection, correction, and avoidance methods have been proposed at the cost of redundant spatial and information overheads. In this paper, we propose a crosstalk prediction hardware based on an abstract model deduced from low-level interconnect evaluation for new technologies. This predictor monitors the data pattern to be sent through a communication bus and predicts those likely subjected to the crosstalk fault. Thus, to prevent crosstalk faults, the predictor dynamically engages an avoidance or detection mechanism. Top-level buses are the target of the proposed method. Simulation results reveal that the proposed communication channel is more efficient in terms of crosstalk alleviation as well as area and performance overhead compared to the state of the art reliability methods.\",\"PeriodicalId\":267309,\"journal\":{\"name\":\"2020 IEEE European Test Symposium (ETS)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS48528.2020.9131576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在非常深的亚微米技术节点中,互连的信号完整性受到串扰噪声的严重破坏。为了使通信链路可靠地抵抗串扰故障,提出了不同的检测、校正和避免方法,代价是冗余的空间和信息开销。本文提出了一种基于底层互连评价的抽象模型的串扰预测硬件。这个预测器监视要通过通信总线发送的数据模式,并预测那些可能遭受串扰故障的模式。因此,为了防止串扰故障,预测器动态地采用避免或检测机制。顶级总线是所建议方法的目标。仿真结果表明,与现有的可靠性方法相比,所提出的通信信道在减少串扰、减少面积和性能开销方面具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Built-In Predictors for Dynamic Crosstalk Avoidance
In very deep sub-micrometer technology nodes, signal integrity of interconnects has been drastically jeopardized by crosstalk noise. To make a communication link reliable against crosstalk faults, different detection, correction, and avoidance methods have been proposed at the cost of redundant spatial and information overheads. In this paper, we propose a crosstalk prediction hardware based on an abstract model deduced from low-level interconnect evaluation for new technologies. This predictor monitors the data pattern to be sent through a communication bus and predicts those likely subjected to the crosstalk fault. Thus, to prevent crosstalk faults, the predictor dynamically engages an avoidance or detection mechanism. Top-level buses are the target of the proposed method. Simulation results reveal that the proposed communication channel is more efficient in terms of crosstalk alleviation as well as area and performance overhead compared to the state of the art reliability methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determined-Safe Faults Identification: A step towards ISO26262 hardware compliant designs Accurate Measurements of Small Resistances in Vertical Interconnects with Small Aspect Ratios Anomaly Detection in Embedded Systems Using Power and Memory Side Channels The Risk of Outsourcing: Hidden SCA Trojans in Third-Party IP-Cores Threaten Cryptographic ICs A SIFT-based Waveform Clustering Method for aiding analog/mixed-signal IC Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1