{"title":"六足机器人姿态控制反馈输入优化","authors":"H. Uchida","doi":"10.13180/clawar.2018.10-12.09.16","DOIUrl":null,"url":null,"abstract":"In this study, an optimization method of feedback control inputs for a posture control of a six-legged robot was developed. The authors had proposed a method to control using an optimum servo system as a posture control method of a six-legged robot. As a problem of this method, because the feedback (FB) gain was switched at the time of switching the swing leg, the control inputs becomes discontinuous and there was a problem that the posture variation increases. After that, FB inputs of the thigh link obtained by optimum servo system were optimized. Then, we design a control system that suppressed the posture variation that occurs during swing leg switching. The effectiveness of the proposed control method was confirmed using a 3D model of a six-legged robot.","PeriodicalId":145851,"journal":{"name":"Robotics Transforming the Future","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of feedback control inputs for posture control of a six-legged robot\",\"authors\":\"H. Uchida\",\"doi\":\"10.13180/clawar.2018.10-12.09.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an optimization method of feedback control inputs for a posture control of a six-legged robot was developed. The authors had proposed a method to control using an optimum servo system as a posture control method of a six-legged robot. As a problem of this method, because the feedback (FB) gain was switched at the time of switching the swing leg, the control inputs becomes discontinuous and there was a problem that the posture variation increases. After that, FB inputs of the thigh link obtained by optimum servo system were optimized. Then, we design a control system that suppressed the posture variation that occurs during swing leg switching. The effectiveness of the proposed control method was confirmed using a 3D model of a six-legged robot.\",\"PeriodicalId\":145851,\"journal\":{\"name\":\"Robotics Transforming the Future\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics Transforming the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13180/clawar.2018.10-12.09.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics Transforming the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13180/clawar.2018.10-12.09.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of feedback control inputs for posture control of a six-legged robot
In this study, an optimization method of feedback control inputs for a posture control of a six-legged robot was developed. The authors had proposed a method to control using an optimum servo system as a posture control method of a six-legged robot. As a problem of this method, because the feedback (FB) gain was switched at the time of switching the swing leg, the control inputs becomes discontinuous and there was a problem that the posture variation increases. After that, FB inputs of the thigh link obtained by optimum servo system were optimized. Then, we design a control system that suppressed the posture variation that occurs during swing leg switching. The effectiveness of the proposed control method was confirmed using a 3D model of a six-legged robot.