{"title":"利用互联交通数据为应急车辆建模绿波","authors":"Laura Bieker-Walz, M. Behrisch","doi":"10.29007/SJ1M","DOIUrl":null,"url":null,"abstract":"For emergency vehicle drivers it is an important task to reach the incident location as fast as possible. Therefore a self-organizing green wave could help emergency vehicles to accomplish this goal. This study presents an approach how emergency vehicle can be prioritized at traffic lights and simulates the possible benefit for the emergency vehicle. Traffic data from vehicular communication can be used to find the optimal timing for the traffic light to modify the existing traffic phases and reduce the possible negative impact on other traffic participants.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Modelling green waves for emergency vehicles using connected traffic data\",\"authors\":\"Laura Bieker-Walz, M. Behrisch\",\"doi\":\"10.29007/SJ1M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For emergency vehicle drivers it is an important task to reach the incident location as fast as possible. Therefore a self-organizing green wave could help emergency vehicles to accomplish this goal. This study presents an approach how emergency vehicle can be prioritized at traffic lights and simulates the possible benefit for the emergency vehicle. Traffic data from vehicular communication can be used to find the optimal timing for the traffic light to modify the existing traffic phases and reduce the possible negative impact on other traffic participants.\",\"PeriodicalId\":201953,\"journal\":{\"name\":\"International Conference on Simulation of Urban Mobility\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Simulation of Urban Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/SJ1M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Simulation of Urban Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/SJ1M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling green waves for emergency vehicles using connected traffic data
For emergency vehicle drivers it is an important task to reach the incident location as fast as possible. Therefore a self-organizing green wave could help emergency vehicles to accomplish this goal. This study presents an approach how emergency vehicle can be prioritized at traffic lights and simulates the possible benefit for the emergency vehicle. Traffic data from vehicular communication can be used to find the optimal timing for the traffic light to modify the existing traffic phases and reduce the possible negative impact on other traffic participants.