手写签名验证的调查

A. Sanmorino, S. Yazid
{"title":"手写签名验证的调查","authors":"A. Sanmorino, S. Yazid","doi":"10.1109/URKE.2012.6319582","DOIUrl":null,"url":null,"abstract":"Signature verification is the process used to recognize an individual's handwritten signature. Signature verification can be divided into two main areas depending on the data acquisition method, off-line and on-line signature verification. In this paper we attempt to survey the signature verification based on three categories. First, judging from how to get the data signature which is off-line and on-line verification. Second, based on the technique used, that is rule-based approach, neural networks, hidden Markov model and support vector machine. Third, based on preprocessing and feature extraction, which is thinning and line segmentation. Based on the survey, it was concluded that any method of verification has advantages and disadvantages. However, if viewed from the ease of implementation and performance, using neural networks or hidden Markov models are the right choice. Depending on the data acquisition method, on-line verification is recommended to use than off-line verification.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A survey for handwritten signature verification\",\"authors\":\"A. Sanmorino, S. Yazid\",\"doi\":\"10.1109/URKE.2012.6319582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signature verification is the process used to recognize an individual's handwritten signature. Signature verification can be divided into two main areas depending on the data acquisition method, off-line and on-line signature verification. In this paper we attempt to survey the signature verification based on three categories. First, judging from how to get the data signature which is off-line and on-line verification. Second, based on the technique used, that is rule-based approach, neural networks, hidden Markov model and support vector machine. Third, based on preprocessing and feature extraction, which is thinning and line segmentation. Based on the survey, it was concluded that any method of verification has advantages and disadvantages. However, if viewed from the ease of implementation and performance, using neural networks or hidden Markov models are the right choice. Depending on the data acquisition method, on-line verification is recommended to use than off-line verification.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

签名验证是用于识别个人手写签名的过程。根据数据采集方式的不同,签名验证可以分为离线签名验证和在线签名验证两个主要领域。本文尝试从三个方面对签名验证进行概述。首先,从数据签名的获取方式来判断,即离线验证和在线验证。其次,根据所使用的技术,即基于规则的方法,神经网络,隐马尔可夫模型和支持向量机。第三,基于预处理和特征提取,即细化和线分割。根据调查,得出结论,任何验证方法都有优点和缺点。然而,如果从易于实现和性能来看,使用神经网络或隐马尔可夫模型是正确的选择。根据数据采集方式的不同,建议使用在线验证,而不是离线验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey for handwritten signature verification
Signature verification is the process used to recognize an individual's handwritten signature. Signature verification can be divided into two main areas depending on the data acquisition method, off-line and on-line signature verification. In this paper we attempt to survey the signature verification based on three categories. First, judging from how to get the data signature which is off-line and on-line verification. Second, based on the technique used, that is rule-based approach, neural networks, hidden Markov model and support vector machine. Third, based on preprocessing and feature extraction, which is thinning and line segmentation. Based on the survey, it was concluded that any method of verification has advantages and disadvantages. However, if viewed from the ease of implementation and performance, using neural networks or hidden Markov models are the right choice. Depending on the data acquisition method, on-line verification is recommended to use than off-line verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driving system stability analysis and improving of IPMSM Bayesian network structure learning for discrete and continuous variables Development of genetic algorithm on multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system Inter-transaction association rule mining in the Indonesia stock exchange market Extreme graphs with given order and edge-neighbor-scattering number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1