将关系数据库数据转换为可共享格式的R2rml映射驱动方法

Runumi Devi, D. Mehrotra, Hajer Baazaoui-Zghal
{"title":"将关系数据库数据转换为可共享格式的R2rml映射驱动方法","authors":"Runumi Devi, D. Mehrotra, Hajer Baazaoui-Zghal","doi":"10.1109/IADCC.2018.8692085","DOIUrl":null,"url":null,"abstract":"Availability of publications data is significant in research development and a global publications data in semantic web will help research community in great manner. W3C has provided a semantic web standard termed as RDB to RDF Mapping Language(R2RML). R2RML allows us to express mappings to be customized from relational database to RDF database. This paper discusses a convergence approach-PubWorld using R2RML that generate r2rml mapping files from three disparate relational databases- two for publication and one for world database. Publications data are made shareable directly from mapping file by converting into local ontologies and merging the local ontologies along with one existing ontology into one global ontology. The Header-Dictionary-Triples(HDT) compression technique is used for storing the global ontology to achieve large spatial savings. Simple Protocol and RDF Query Language(SPARQL) queries using Jena ARQ(And RDF Query) on both RDF and HDT version shows similar running time.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pubworld-A R2rml Mapping Driven Approach To Transform Relational Database Data Into Shareable Format\",\"authors\":\"Runumi Devi, D. Mehrotra, Hajer Baazaoui-Zghal\",\"doi\":\"10.1109/IADCC.2018.8692085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Availability of publications data is significant in research development and a global publications data in semantic web will help research community in great manner. W3C has provided a semantic web standard termed as RDB to RDF Mapping Language(R2RML). R2RML allows us to express mappings to be customized from relational database to RDF database. This paper discusses a convergence approach-PubWorld using R2RML that generate r2rml mapping files from three disparate relational databases- two for publication and one for world database. Publications data are made shareable directly from mapping file by converting into local ontologies and merging the local ontologies along with one existing ontology into one global ontology. The Header-Dictionary-Triples(HDT) compression technique is used for storing the global ontology to achieve large spatial savings. Simple Protocol and RDF Query Language(SPARQL) queries using Jena ARQ(And RDF Query) on both RDF and HDT version shows similar running time.\",\"PeriodicalId\":365713,\"journal\":{\"name\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2018.8692085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

出版物数据的可用性在研究发展中具有重要意义,语义网的全球出版物数据将极大地促进研究社区的发展。W3C提供了一个语义web标准,称为RDB到RDF映射语言(R2RML)。R2RML允许我们表示从关系数据库到RDF数据库的自定义映射。本文讨论了一种聚合方法——使用R2RML的pubworld,它从三个不同的关系数据库生成R2RML映射文件——两个用于发布,一个用于世界数据库。通过将出版物数据转换为本地本体,并将本地本体与现有本体合并为一个全局本体,可以直接从映射文件共享出版物数据。采用头-字典-三元组(Header-Dictionary-Triples, HDT)压缩技术存储全局本体,节省大量空间。在RDF和HDT版本上使用Jena ARQ(和RDF Query)的简单协议和RDF查询语言(SPARQL)查询显示了相似的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pubworld-A R2rml Mapping Driven Approach To Transform Relational Database Data Into Shareable Format
Availability of publications data is significant in research development and a global publications data in semantic web will help research community in great manner. W3C has provided a semantic web standard termed as RDB to RDF Mapping Language(R2RML). R2RML allows us to express mappings to be customized from relational database to RDF database. This paper discusses a convergence approach-PubWorld using R2RML that generate r2rml mapping files from three disparate relational databases- two for publication and one for world database. Publications data are made shareable directly from mapping file by converting into local ontologies and merging the local ontologies along with one existing ontology into one global ontology. The Header-Dictionary-Triples(HDT) compression technique is used for storing the global ontology to achieve large spatial savings. Simple Protocol and RDF Query Language(SPARQL) queries using Jena ARQ(And RDF Query) on both RDF and HDT version shows similar running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Motifs in DNA Sequences: A Suffix Tree Based Approach Prediction Model for Automated Leaf Disease Detection & Analysis Blind navigation using ambient crowd analysis HUPM: Efficient High Utility Pattern Mining Algorithm for E-Business Algorithm to Quantify the Low and High Resolution HLA Matching in Renal Transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1