{"title":"用于被动成像的硅基亚太赫兹辐射计","authors":"Bi Xiaojun","doi":"10.1109/APCAP.2018.8538291","DOIUrl":null,"url":null,"abstract":"This paper presents three silicon-based 100 GHz radiometer chips for passive imaging, including a total power radiometer and two types of Dicke radiometers. The total power radiometer consists of a high gain low noise amplifier (LNA) and a high-responsivity detector. Besides the LNA and the detector, the two Dicke radiometers include an additional passive SPDT switch and a proposed SPDT amplifier respectively. The above radiometers are fabricated in two different $0.13 \\mu \\mathrm {m}$ SiGe BiCMOS technologies, which feature comparable $f_{\\mathrm {T}}/ f_{\\max}$. The measurement results demonstrate a typical LNA gain of 35–45 dB utilizing 4 cascode stages, a typical responsivity of 27.2 kV/W, a typical noise equivalent power of around $2.5\\,\\mathrm{pW/\\surd Hz}$ at 91 GHz. Utilizing the SPDT amplifier, the Dicke radiometer demonstrates a switching loss as small as 0.93 @ 91 GHz, which leads to a noise equivalent temperature difference (NETD) as small as 0.21 K@30 ms.","PeriodicalId":198124,"journal":{"name":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon-Based sub-THz Radiometers for Passive Imaging\",\"authors\":\"Bi Xiaojun\",\"doi\":\"10.1109/APCAP.2018.8538291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents three silicon-based 100 GHz radiometer chips for passive imaging, including a total power radiometer and two types of Dicke radiometers. The total power radiometer consists of a high gain low noise amplifier (LNA) and a high-responsivity detector. Besides the LNA and the detector, the two Dicke radiometers include an additional passive SPDT switch and a proposed SPDT amplifier respectively. The above radiometers are fabricated in two different $0.13 \\\\mu \\\\mathrm {m}$ SiGe BiCMOS technologies, which feature comparable $f_{\\\\mathrm {T}}/ f_{\\\\max}$. The measurement results demonstrate a typical LNA gain of 35–45 dB utilizing 4 cascode stages, a typical responsivity of 27.2 kV/W, a typical noise equivalent power of around $2.5\\\\,\\\\mathrm{pW/\\\\surd Hz}$ at 91 GHz. Utilizing the SPDT amplifier, the Dicke radiometer demonstrates a switching loss as small as 0.93 @ 91 GHz, which leads to a noise equivalent temperature difference (NETD) as small as 0.21 K@30 ms.\",\"PeriodicalId\":198124,\"journal\":{\"name\":\"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAP.2018.8538291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP.2018.8538291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon-Based sub-THz Radiometers for Passive Imaging
This paper presents three silicon-based 100 GHz radiometer chips for passive imaging, including a total power radiometer and two types of Dicke radiometers. The total power radiometer consists of a high gain low noise amplifier (LNA) and a high-responsivity detector. Besides the LNA and the detector, the two Dicke radiometers include an additional passive SPDT switch and a proposed SPDT amplifier respectively. The above radiometers are fabricated in two different $0.13 \mu \mathrm {m}$ SiGe BiCMOS technologies, which feature comparable $f_{\mathrm {T}}/ f_{\max}$. The measurement results demonstrate a typical LNA gain of 35–45 dB utilizing 4 cascode stages, a typical responsivity of 27.2 kV/W, a typical noise equivalent power of around $2.5\,\mathrm{pW/\surd Hz}$ at 91 GHz. Utilizing the SPDT amplifier, the Dicke radiometer demonstrates a switching loss as small as 0.93 @ 91 GHz, which leads to a noise equivalent temperature difference (NETD) as small as 0.21 K@30 ms.