使用随机森林改进经济信用风险记分卡的艺术、工艺和科学:为什么信用评分者和经济学家应该使用随机森林

Dhruv Sharma
{"title":"使用随机森林改进经济信用风险记分卡的艺术、工艺和科学:为什么信用评分者和经济学家应该使用随机森林","authors":"Dhruv Sharma","doi":"10.2139/ssrn.1861535","DOIUrl":null,"url":null,"abstract":"This paper outlines an approach to improving credit score modeling using random forests and compares random forests with logistic regression. It is shown that on data sets where variables have multicollinearity and complex interrelationships random forests provide a more scientific approach to analyzing variable importance and achieving optimal predictive accuracy. In addition it is shown that random forests should be used in econometric and credit risk models as they provide a powerful too to assess meaning of variables not available in standard regression models and thus allow for more robust findings.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Improving the Art, Craft and Science of Economic Credit Risk Scorecards Using Random Forests: Why Credit Scorers and Economists Should Use Random Forests\",\"authors\":\"Dhruv Sharma\",\"doi\":\"10.2139/ssrn.1861535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines an approach to improving credit score modeling using random forests and compares random forests with logistic regression. It is shown that on data sets where variables have multicollinearity and complex interrelationships random forests provide a more scientific approach to analyzing variable importance and achieving optimal predictive accuracy. In addition it is shown that random forests should be used in econometric and credit risk models as they provide a powerful too to assess meaning of variables not available in standard regression models and thus allow for more robust findings.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1861535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1861535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文概述了一种利用随机森林改进信用评分建模的方法,并将随机森林与逻辑回归进行了比较。研究表明,在变量具有多重共线性和复杂相互关系的数据集上,随机森林提供了一种更科学的方法来分析变量的重要性并获得最佳的预测精度。此外,研究表明,随机森林应该用于计量经济和信用风险模型,因为它们提供了一个强大的工具来评估标准回归模型中不可用的变量的含义,从而允许更稳健的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Art, Craft and Science of Economic Credit Risk Scorecards Using Random Forests: Why Credit Scorers and Economists Should Use Random Forests
This paper outlines an approach to improving credit score modeling using random forests and compares random forests with logistic regression. It is shown that on data sets where variables have multicollinearity and complex interrelationships random forests provide a more scientific approach to analyzing variable importance and achieving optimal predictive accuracy. In addition it is shown that random forests should be used in econometric and credit risk models as they provide a powerful too to assess meaning of variables not available in standard regression models and thus allow for more robust findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1