大规模MIMO系统的序列更新混合预处理CG检测

Jing Zeng, Jun Lin, Zhongfeng Wang, Yun Chen
{"title":"大规模MIMO系统的序列更新混合预处理CG检测","authors":"Jing Zeng, Jun Lin, Zhongfeng Wang, Yun Chen","doi":"10.1109/SiPS47522.2019.9020319","DOIUrl":null,"url":null,"abstract":"Massive Multi-Input Multi-Output (MIMO) is one of the key technologies for the fifth generation communication systems. Conjugate Gradient (CG) algorithm approximates the minimum mean-square error (MMSE) in an iterative manner, which avoids full matrix inversion. Pre-conditioned CG (PCG) was presented to improve the robustness of CG method. However, for the PCG, a sparse matrix inversion is still required in preprocessing and the performance is only comparable to MMSE. In this paper, a hybrid PCG algorithm (HPCG) with sequential update is proposed with superior performance and low complexity. The preconditioned matrix is replaced by a diagonal matrix by exploring its characteristics, which avoids matrix inversion and incomplete Cholesky factorization. Besides, to improve the bit error performance, a sequential update strategy is employed for estimated signals after PCG detection. For a MIMO system with 128 receive antennas, simulation results show the proposed HPCG algorithm outperforms MMSE by 0.25 dB to 1.5 dB under different numbers of users. Based on the channel hardening theories, several signal vectors can be transmitted in the same channel condition. When 10 signal vectors are considered, compared to the other CG based algorithms, the overall complexity of HPCG can be reduced by 3.9% to 56%.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Preconditioned CG Detection with Sequential Update for Massive MIMO Systems\",\"authors\":\"Jing Zeng, Jun Lin, Zhongfeng Wang, Yun Chen\",\"doi\":\"10.1109/SiPS47522.2019.9020319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive Multi-Input Multi-Output (MIMO) is one of the key technologies for the fifth generation communication systems. Conjugate Gradient (CG) algorithm approximates the minimum mean-square error (MMSE) in an iterative manner, which avoids full matrix inversion. Pre-conditioned CG (PCG) was presented to improve the robustness of CG method. However, for the PCG, a sparse matrix inversion is still required in preprocessing and the performance is only comparable to MMSE. In this paper, a hybrid PCG algorithm (HPCG) with sequential update is proposed with superior performance and low complexity. The preconditioned matrix is replaced by a diagonal matrix by exploring its characteristics, which avoids matrix inversion and incomplete Cholesky factorization. Besides, to improve the bit error performance, a sequential update strategy is employed for estimated signals after PCG detection. For a MIMO system with 128 receive antennas, simulation results show the proposed HPCG algorithm outperforms MMSE by 0.25 dB to 1.5 dB under different numbers of users. Based on the channel hardening theories, several signal vectors can be transmitted in the same channel condition. When 10 signal vectors are considered, compared to the other CG based algorithms, the overall complexity of HPCG can be reduced by 3.9% to 56%.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大规模多输入多输出(MIMO)是第五代通信系统的关键技术之一。共轭梯度(CG)算法以迭代的方式逼近最小均方误差(MMSE),避免了全矩阵反演。为了提高CG方法的鲁棒性,提出了预条件CG (PCG)。然而,对于PCG,在预处理中仍然需要进行稀疏矩阵反演,性能仅与MMSE相当。本文提出了一种具有较好性能和较低复杂度的顺序更新混合PCG算法(HPCG)。通过探索对角矩阵的特性,将预条件矩阵替换为对角矩阵,避免了矩阵的反演和不完全Cholesky分解。此外,为了提高误码性能,对PCG检测后的估计信号采用顺序更新策略。对于具有128个接收天线的MIMO系统,仿真结果表明,在不同用户数量下,HPCG算法的性能比MMSE高0.25 ~ 1.5 dB。基于信道硬化理论,可以在同一信道条件下同时传输多个信号矢量。当考虑10个信号矢量时,与其他基于CG的算法相比,HPCG的总体复杂度可降低3.9% ~ 56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Preconditioned CG Detection with Sequential Update for Massive MIMO Systems
Massive Multi-Input Multi-Output (MIMO) is one of the key technologies for the fifth generation communication systems. Conjugate Gradient (CG) algorithm approximates the minimum mean-square error (MMSE) in an iterative manner, which avoids full matrix inversion. Pre-conditioned CG (PCG) was presented to improve the robustness of CG method. However, for the PCG, a sparse matrix inversion is still required in preprocessing and the performance is only comparable to MMSE. In this paper, a hybrid PCG algorithm (HPCG) with sequential update is proposed with superior performance and low complexity. The preconditioned matrix is replaced by a diagonal matrix by exploring its characteristics, which avoids matrix inversion and incomplete Cholesky factorization. Besides, to improve the bit error performance, a sequential update strategy is employed for estimated signals after PCG detection. For a MIMO system with 128 receive antennas, simulation results show the proposed HPCG algorithm outperforms MMSE by 0.25 dB to 1.5 dB under different numbers of users. Based on the channel hardening theories, several signal vectors can be transmitted in the same channel condition. When 10 signal vectors are considered, compared to the other CG based algorithms, the overall complexity of HPCG can be reduced by 3.9% to 56%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1