用马尔可夫链蒙特卡罗方法分析关键比较参考值及其不确定性

Haiyun Zhang, Dinghua Xu, Jianli Liu, Tiepeng Zhao
{"title":"用马尔可夫链蒙特卡罗方法分析关键比较参考值及其不确定性","authors":"Haiyun Zhang, Dinghua Xu, Jianli Liu, Tiepeng Zhao","doi":"10.1117/12.2511633","DOIUrl":null,"url":null,"abstract":"The analysis of Key Comparison data is to determine the Key Comparison Reference Value (KCRV) and its uncertainty. In the current model, the weighted mean is used as KCRV which is put forward by M, G, Cox. However, the method qualifies the measurement results as Gaussian distribution and does not apply to T distribution or other, which causes the risks of chi-square test failure. When the data analysis is invalid based on conventional statistics, the Bayesian approach may be a valid and welcome alternative. Bayesian inference is often required to solve high-dimensional integrations which Markov chain Monte Carlo (MCMC) is such a method. Here is a simple example used to illustrate the application of this method in metrology. The Metropolis-Hastings algorithm is the most flexible and efficient algorithm in MCMC method. In this paper, its basic concepts are explained and the algorithm steps are given. Besides, we obtain the KCRV and its uncertainty using the Metropolis-Hastings algorithm through MATLAB. Then, the convergence of MCMC is diagnosed. In principle, the MCMC method works for any starting value and any proposal distribution. In practice, however, both choices affect performance. We illustrate this influence with the example.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analysis of key comparison reference value and its uncertainty using Markov chain Monte Carlo method\",\"authors\":\"Haiyun Zhang, Dinghua Xu, Jianli Liu, Tiepeng Zhao\",\"doi\":\"10.1117/12.2511633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of Key Comparison data is to determine the Key Comparison Reference Value (KCRV) and its uncertainty. In the current model, the weighted mean is used as KCRV which is put forward by M, G, Cox. However, the method qualifies the measurement results as Gaussian distribution and does not apply to T distribution or other, which causes the risks of chi-square test failure. When the data analysis is invalid based on conventional statistics, the Bayesian approach may be a valid and welcome alternative. Bayesian inference is often required to solve high-dimensional integrations which Markov chain Monte Carlo (MCMC) is such a method. Here is a simple example used to illustrate the application of this method in metrology. The Metropolis-Hastings algorithm is the most flexible and efficient algorithm in MCMC method. In this paper, its basic concepts are explained and the algorithm steps are given. Besides, we obtain the KCRV and its uncertainty using the Metropolis-Hastings algorithm through MATLAB. Then, the convergence of MCMC is diagnosed. In principle, the MCMC method works for any starting value and any proposal distribution. In practice, however, both choices affect performance. We illustrate this influence with the example.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2511633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键比对数据分析的目的是确定关键比对参考值(KCRV)及其不确定度。在目前的模型中,采用M, G, Cox提出的加权均值作为KCRV。但是,该方法将测量结果限定为高斯分布,并不适用于T分布或其他分布,这就存在卡方检验失败的风险。当基于传统统计的数据分析无效时,贝叶斯方法可能是一种有效且受欢迎的替代方法。求解高维积分通常需要贝叶斯推理,而马尔可夫链蒙特卡罗(MCMC)就是这样一种方法。这里有一个简单的例子来说明这种方法在计量中的应用。Metropolis-Hastings算法是MCMC方法中最灵活、最高效的算法。本文阐述了其基本概念,给出了算法步骤。此外,通过MATLAB,利用Metropolis-Hastings算法得到了KCRV及其不确定性。然后对MCMC的收敛性进行了诊断。原则上,MCMC方法适用于任何初始值和任何提案分布。然而,在实践中,这两种选择都会影响性能。我们用例子来说明这种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The analysis of key comparison reference value and its uncertainty using Markov chain Monte Carlo method
The analysis of Key Comparison data is to determine the Key Comparison Reference Value (KCRV) and its uncertainty. In the current model, the weighted mean is used as KCRV which is put forward by M, G, Cox. However, the method qualifies the measurement results as Gaussian distribution and does not apply to T distribution or other, which causes the risks of chi-square test failure. When the data analysis is invalid based on conventional statistics, the Bayesian approach may be a valid and welcome alternative. Bayesian inference is often required to solve high-dimensional integrations which Markov chain Monte Carlo (MCMC) is such a method. Here is a simple example used to illustrate the application of this method in metrology. The Metropolis-Hastings algorithm is the most flexible and efficient algorithm in MCMC method. In this paper, its basic concepts are explained and the algorithm steps are given. Besides, we obtain the KCRV and its uncertainty using the Metropolis-Hastings algorithm through MATLAB. Then, the convergence of MCMC is diagnosed. In principle, the MCMC method works for any starting value and any proposal distribution. In practice, however, both choices affect performance. We illustrate this influence with the example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel two-dimensional inductive sensor based on planar coils Combining compound eyes and human eye: a hybrid bionic imaging method for FOV extension and foveated vision Measurement of deionized water density based on single silicon sphere Research of variable-frequency big current calibration The optimization of segment’s axial support point for large astronomical telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1