基于扩展心电序列数据库和深度学习技术的心脏病识别

R. Avanzato, F. Beritelli
{"title":"基于扩展心电序列数据库和深度学习技术的心脏病识别","authors":"R. Avanzato, F. Beritelli","doi":"10.1109/IoTaIS56727.2022.9975983","DOIUrl":null,"url":null,"abstract":"Mortality caused by cardiovascular diseases (CVDs) has been steadily increasing over the years. For this reason, numerous studies have addressed this issue, introducing innovative techniques for automatic detection of heart disease using ECG/PCG signals and convolutional neural networks (CNNs). The present paper proposes a system for automatic diagnosis of heart disease (five pathology classes) using electrocardiogram (ECG) signals and CNNs. Specifically, ECG signals are passed directly to an appropriately trained CNN network. The database comprises a combination of two public datasets: MIT-BIH Arrhythmia and MIT-BIH Atrial Fibrillation database. The results obtained from testing the network show average classification accuracy of about 93% when a 2second ECG signal is fed to the network; conversely, applying a post-processing filter results in about 100% accuracy after around 38 seconds.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heart disease recognition based on extended ECG sequence database and deep learning techniques\",\"authors\":\"R. Avanzato, F. Beritelli\",\"doi\":\"10.1109/IoTaIS56727.2022.9975983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mortality caused by cardiovascular diseases (CVDs) has been steadily increasing over the years. For this reason, numerous studies have addressed this issue, introducing innovative techniques for automatic detection of heart disease using ECG/PCG signals and convolutional neural networks (CNNs). The present paper proposes a system for automatic diagnosis of heart disease (five pathology classes) using electrocardiogram (ECG) signals and CNNs. Specifically, ECG signals are passed directly to an appropriately trained CNN network. The database comprises a combination of two public datasets: MIT-BIH Arrhythmia and MIT-BIH Atrial Fibrillation database. The results obtained from testing the network show average classification accuracy of about 93% when a 2second ECG signal is fed to the network; conversely, applying a post-processing filter results in about 100% accuracy after around 38 seconds.\",\"PeriodicalId\":138894,\"journal\":{\"name\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTaIS56727.2022.9975983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

心血管疾病造成的死亡率多年来一直在稳步上升。出于这个原因,许多研究已经解决了这个问题,引入了使用ECG/PCG信号和卷积神经网络(cnn)自动检测心脏病的创新技术。本文提出了一种利用心电图信号和cnn对心脏病(五种病理类型)进行自动诊断的系统。具体来说,心电信号直接传递到经过适当训练的CNN网络。该数据库由两个公共数据集组成:MIT-BIH心律失常和MIT-BIH心房颤动数据库。实验结果表明,当输入2秒的心电信号时,该网络的平均分类准确率约为93%;相反,应用后处理过滤器在大约38秒后的结果是大约100%的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart disease recognition based on extended ECG sequence database and deep learning techniques
Mortality caused by cardiovascular diseases (CVDs) has been steadily increasing over the years. For this reason, numerous studies have addressed this issue, introducing innovative techniques for automatic detection of heart disease using ECG/PCG signals and convolutional neural networks (CNNs). The present paper proposes a system for automatic diagnosis of heart disease (five pathology classes) using electrocardiogram (ECG) signals and CNNs. Specifically, ECG signals are passed directly to an appropriately trained CNN network. The database comprises a combination of two public datasets: MIT-BIH Arrhythmia and MIT-BIH Atrial Fibrillation database. The results obtained from testing the network show average classification accuracy of about 93% when a 2second ECG signal is fed to the network; conversely, applying a post-processing filter results in about 100% accuracy after around 38 seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selecting Resource-Efficient ML Models for Transport Mode Detection on Mobile Devices A Two-Step Machine Learning Model for Stage-Specific Disease Survivability Prediction Comparing Analog and Digital Processing for Ultra Low-Power Embedded Artificial Intelligence Channel Estimation in Cellular Massive MIMO: A Data-Driven Approach A proposal on the control mechanism among distributed MQTT brokers over wide area networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1