用ASF和曲线拟合方法通过小数据(如4个数据)预测未来事件

Yunong Zhang, Jielong Chen, Haosen Lu
{"title":"用ASF和曲线拟合方法通过小数据(如4个数据)预测未来事件","authors":"Yunong Zhang, Jielong Chen, Haosen Lu","doi":"10.1109/ICICIP53388.2021.9642179","DOIUrl":null,"url":null,"abstract":"Future prediction is a branch of information processing. An attempt to predict some future event year is presented in this work via combining the addition-subtraction frequency (ASF) method, i.e., ASF algorithms with 3 inputs, and multiple mathematical modeling methods (e.g., polynomial curve fitting, exponential curve fitting, and smoothing spline). The 3-input ASF algorithms using full-traversal, equal-half-traversal, and unequal-half-traversal are applied in the numerical experiments. The difficult challenge we face is that the raw data set size is small, i.e., only 4. Thus, we process the limited information in a variety of ways, i.e., we handle the small data set by using multiple methods. We finally predict that 2021, 2022, or 2027 is of relatively high possibility to be a future year of such a small-data sequence. There may be errors of one to two years, and it may be avoided if some proper measures are taken.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Future Event via Small Data (e.g., 4 Data) by ASF and Curve Fitting Methods\",\"authors\":\"Yunong Zhang, Jielong Chen, Haosen Lu\",\"doi\":\"10.1109/ICICIP53388.2021.9642179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future prediction is a branch of information processing. An attempt to predict some future event year is presented in this work via combining the addition-subtraction frequency (ASF) method, i.e., ASF algorithms with 3 inputs, and multiple mathematical modeling methods (e.g., polynomial curve fitting, exponential curve fitting, and smoothing spline). The 3-input ASF algorithms using full-traversal, equal-half-traversal, and unequal-half-traversal are applied in the numerical experiments. The difficult challenge we face is that the raw data set size is small, i.e., only 4. Thus, we process the limited information in a variety of ways, i.e., we handle the small data set by using multiple methods. We finally predict that 2021, 2022, or 2027 is of relatively high possibility to be a future year of such a small-data sequence. There may be errors of one to two years, and it may be avoided if some proper measures are taken.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"2004 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

未来预测是信息处理的一个分支。本文通过结合加减频率(ASF)方法,即具有3个输入的ASF算法,以及多种数学建模方法(如多项式曲线拟合、指数曲线拟合和平滑样条),提出了预测未来某个事件年的尝试。采用全遍历、等半遍历和不等半遍历三种输入ASF算法进行了数值实验。我们面临的困难挑战是原始数据集的大小很小,即只有4个。因此,我们以多种方式处理有限的信息,即使用多种方法处理小数据集。我们最终预测,2021年、2022年或2027年相对有可能成为这种小数据序列的未来一年。可能会有一到两年的错误,如果采取适当的措施是可以避免的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Future Event via Small Data (e.g., 4 Data) by ASF and Curve Fitting Methods
Future prediction is a branch of information processing. An attempt to predict some future event year is presented in this work via combining the addition-subtraction frequency (ASF) method, i.e., ASF algorithms with 3 inputs, and multiple mathematical modeling methods (e.g., polynomial curve fitting, exponential curve fitting, and smoothing spline). The 3-input ASF algorithms using full-traversal, equal-half-traversal, and unequal-half-traversal are applied in the numerical experiments. The difficult challenge we face is that the raw data set size is small, i.e., only 4. Thus, we process the limited information in a variety of ways, i.e., we handle the small data set by using multiple methods. We finally predict that 2021, 2022, or 2027 is of relatively high possibility to be a future year of such a small-data sequence. There may be errors of one to two years, and it may be avoided if some proper measures are taken.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1