一种两阶段多目标遗传模糊挖掘算法

Chun-Hao Chen, Ji-Syuan He, T. Hong
{"title":"一种两阶段多目标遗传模糊挖掘算法","authors":"Chun-Hao Chen, Ji-Syuan He, T. Hong","doi":"10.1109/GEFS.2013.6601050","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-stage multi-objective fuzzy mining algorithm for dealing with linguistic knowledge discovery. In the first stage, the multi-objective genetic algorithm is used to derive a set of non-dominated membership functions (Pareto solutions) with two objective functions. In the second stage, the clustering technique is utilized to find representative solutions from the Pareto solutions. The representative solutions could be employed to mine fuzzy association rules according to the favorites of decision makers. Experiments on a simulation dataset are made and the results show the effectiveness of the proposed algorithm.","PeriodicalId":362308,"journal":{"name":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A two-stage multi-objective genetic-fuzzy mining algorithm\",\"authors\":\"Chun-Hao Chen, Ji-Syuan He, T. Hong\",\"doi\":\"10.1109/GEFS.2013.6601050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a two-stage multi-objective fuzzy mining algorithm for dealing with linguistic knowledge discovery. In the first stage, the multi-objective genetic algorithm is used to derive a set of non-dominated membership functions (Pareto solutions) with two objective functions. In the second stage, the clustering technique is utilized to find representative solutions from the Pareto solutions. The representative solutions could be employed to mine fuzzy association rules according to the favorites of decision makers. Experiments on a simulation dataset are made and the results show the effectiveness of the proposed algorithm.\",\"PeriodicalId\":362308,\"journal\":{\"name\":\"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEFS.2013.6601050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2013.6601050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种两阶段多目标模糊挖掘算法来处理语言知识发现问题。第一阶段,利用多目标遗传算法求解具有两个目标函数的非支配隶属函数(Pareto解)。在第二阶段,利用聚类技术从Pareto解中找到具有代表性的解。代表解可以根据决策者的偏好来挖掘模糊关联规则。在仿真数据集上进行了实验,结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A two-stage multi-objective genetic-fuzzy mining algorithm
In this paper, we propose a two-stage multi-objective fuzzy mining algorithm for dealing with linguistic knowledge discovery. In the first stage, the multi-objective genetic algorithm is used to derive a set of non-dominated membership functions (Pareto solutions) with two objective functions. In the second stage, the clustering technique is utilized to find representative solutions from the Pareto solutions. The representative solutions could be employed to mine fuzzy association rules according to the favorites of decision makers. Experiments on a simulation dataset are made and the results show the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-stage multi-objective genetic-fuzzy mining algorithm Effects of data prevalence on species distribution modelling using a genetic takagi-sugeno fuzzy system An empirical study about the behavior of a genetic learning algorithm on searching spaces pruned by a completeness condition Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges Estimation of human transport modes by fuzzy spiking neural network and evolution strategy in informationally structured space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1