{"title":"热溶胶法制备高织构ZnO薄膜和SnO/ sub2 //ZnO双层膜","authors":"Jinsoo Song, C. Lee, K. Lim, K. Yoon, K. Yu","doi":"10.1109/PVSC.1996.564333","DOIUrl":null,"url":null,"abstract":"Indium-doped ZnO(ZnO:In) films have been prepared on heated Corning 7059 glass by pyrosol spray method. Indium improves the conductivity as an n-type dopant and stimulates grain growth. For films grown at 400/spl deg/C, resistivity of ZnO films decreased from 1.3/spl times/10/sup -2/ /spl Omega/ cm to 3.5/spl times/10/sup -3/ /spl Omega/ cm by doping 1 wt% indium. Furthermore, ZnO:In films grown at higher temperture revealed larger grain sizes and a higher texturization compared to undoped films. A highly textured ZnO:In films with resistivity of 2.5/spl times/10/sup -3/ /spl Omega/ cm, total transmittance of 80% was made at the substrate temperature of 475/spl deg/C, and was milky looking. ZnO:In films did not degrade under hydrogen plasma, and was applied as a protection barrier against hydrogen plasma and the light scattering layer in the SnO/sub 2//ZnO bilayer films. Bilayer films have a resistivity of 8.8/spl times/10/sup -4/ /spl Omega/ cm and total transmittance of 84% at 550 nm, and was proved to have an excellent hydrogen plasma durability.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"2424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly textured ZnO thin films and SnO/sub 2//ZnO bilayer films prepared by the pyrosol process\",\"authors\":\"Jinsoo Song, C. Lee, K. Lim, K. Yoon, K. Yu\",\"doi\":\"10.1109/PVSC.1996.564333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indium-doped ZnO(ZnO:In) films have been prepared on heated Corning 7059 glass by pyrosol spray method. Indium improves the conductivity as an n-type dopant and stimulates grain growth. For films grown at 400/spl deg/C, resistivity of ZnO films decreased from 1.3/spl times/10/sup -2/ /spl Omega/ cm to 3.5/spl times/10/sup -3/ /spl Omega/ cm by doping 1 wt% indium. Furthermore, ZnO:In films grown at higher temperture revealed larger grain sizes and a higher texturization compared to undoped films. A highly textured ZnO:In films with resistivity of 2.5/spl times/10/sup -3/ /spl Omega/ cm, total transmittance of 80% was made at the substrate temperature of 475/spl deg/C, and was milky looking. ZnO:In films did not degrade under hydrogen plasma, and was applied as a protection barrier against hydrogen plasma and the light scattering layer in the SnO/sub 2//ZnO bilayer films. Bilayer films have a resistivity of 8.8/spl times/10/sup -4/ /spl Omega/ cm and total transmittance of 84% at 550 nm, and was proved to have an excellent hydrogen plasma durability.\",\"PeriodicalId\":410394,\"journal\":{\"name\":\"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996\",\"volume\":\"2424 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1996.564333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly textured ZnO thin films and SnO/sub 2//ZnO bilayer films prepared by the pyrosol process
Indium-doped ZnO(ZnO:In) films have been prepared on heated Corning 7059 glass by pyrosol spray method. Indium improves the conductivity as an n-type dopant and stimulates grain growth. For films grown at 400/spl deg/C, resistivity of ZnO films decreased from 1.3/spl times/10/sup -2/ /spl Omega/ cm to 3.5/spl times/10/sup -3/ /spl Omega/ cm by doping 1 wt% indium. Furthermore, ZnO:In films grown at higher temperture revealed larger grain sizes and a higher texturization compared to undoped films. A highly textured ZnO:In films with resistivity of 2.5/spl times/10/sup -3/ /spl Omega/ cm, total transmittance of 80% was made at the substrate temperature of 475/spl deg/C, and was milky looking. ZnO:In films did not degrade under hydrogen plasma, and was applied as a protection barrier against hydrogen plasma and the light scattering layer in the SnO/sub 2//ZnO bilayer films. Bilayer films have a resistivity of 8.8/spl times/10/sup -4/ /spl Omega/ cm and total transmittance of 84% at 550 nm, and was proved to have an excellent hydrogen plasma durability.