基于Mapreduce的大数据增强k - means++聚类

B. Natarajan, P. Chellammal
{"title":"基于Mapreduce的大数据增强k - means++聚类","authors":"B. Natarajan, P. Chellammal","doi":"10.51976/ijari.311509","DOIUrl":null,"url":null,"abstract":"Clustering big data using data mining algorithms is a modern approach, used in various science and medical fields. k-means clustering algorithm is a good approach for clustering, but choosing initial centers and provides less accuracy guarantees. The enhanced k-means approach called 𝑘-means++ chooses one center uniformly at random provides better functionality, but fails to handle data of larger volume in distributed environment. The mapreduce 𝑘-means++ method handles k-means++ algorithm by enhancing it in mapper and reducer phases, also reduces the no of iterations required to obtain 𝑘 centers. in which the 𝑘-means++ initialization algorithm is executed in the mapper phase and the weighted 𝑘-means++ initialization algorithm is run in the reducer phase. it reduces huge amount of communication and i/o costs. the proposed mapreduce 𝑘-means++ method obtains (𝛼2) approximation to the optimal solution of 𝑘-means.","PeriodicalId":330303,"journal":{"name":"International Journal of Advance Research and Innovation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced K-Means++ Clustering For Big Data with Mapreduce\",\"authors\":\"B. Natarajan, P. Chellammal\",\"doi\":\"10.51976/ijari.311509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering big data using data mining algorithms is a modern approach, used in various science and medical fields. k-means clustering algorithm is a good approach for clustering, but choosing initial centers and provides less accuracy guarantees. The enhanced k-means approach called 𝑘-means++ chooses one center uniformly at random provides better functionality, but fails to handle data of larger volume in distributed environment. The mapreduce 𝑘-means++ method handles k-means++ algorithm by enhancing it in mapper and reducer phases, also reduces the no of iterations required to obtain 𝑘 centers. in which the 𝑘-means++ initialization algorithm is executed in the mapper phase and the weighted 𝑘-means++ initialization algorithm is run in the reducer phase. it reduces huge amount of communication and i/o costs. the proposed mapreduce 𝑘-means++ method obtains (𝛼2) approximation to the optimal solution of 𝑘-means.\",\"PeriodicalId\":330303,\"journal\":{\"name\":\"International Journal of Advance Research and Innovation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advance Research and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51976/ijari.311509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advance Research and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51976/ijari.311509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用数据挖掘算法聚类大数据是一种现代方法,用于各种科学和医学领域。K-means聚类算法是一种很好的聚类方法,但其初始中心的选择和精度保证较差。增强型k-means方法𝑘-means++均匀随机选择一个中心提供了更好的功能,但在分布式环境中无法处理更大容量的数据。mapreduce𝑘-means++方法通过在mapper和reducer阶段增强k-means++算法来处理k-means++算法,还减少了获得𝑘中心所需的迭代次数。其中,在mapper阶段执行𝑘-means++初始化算法,在reducer阶段执行加权𝑘-means++初始化算法。它减少了大量的通信和I / O成本。提出的mapreduce𝑘-means++方法得到𝑘-means最优解的近似(𝛼2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced K-Means++ Clustering For Big Data with Mapreduce
Clustering big data using data mining algorithms is a modern approach, used in various science and medical fields. k-means clustering algorithm is a good approach for clustering, but choosing initial centers and provides less accuracy guarantees. The enhanced k-means approach called 𝑘-means++ chooses one center uniformly at random provides better functionality, but fails to handle data of larger volume in distributed environment. The mapreduce 𝑘-means++ method handles k-means++ algorithm by enhancing it in mapper and reducer phases, also reduces the no of iterations required to obtain 𝑘 centers. in which the 𝑘-means++ initialization algorithm is executed in the mapper phase and the weighted 𝑘-means++ initialization algorithm is run in the reducer phase. it reduces huge amount of communication and i/o costs. the proposed mapreduce 𝑘-means++ method obtains (𝛼2) approximation to the optimal solution of 𝑘-means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategic Management Practice for Small and Medium-sized Enterprises in Tamil Nadu: Empirical Evidence Roles of Top Management and Customer Orientation in Enhancing The Performance of Customer Relationship Management (CRM) in Hotel Industry Acoustic Properties of Light Concrete of Natural Pozzolans of Ambohinaorina Design, Modification and Analysis of Industrial Air Compressor (Type: Vt4): A Review Use of Renewable Energy in Dairy Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1