{"title":"迁移学习在纸币识别中的应用:基于波斯尼亚货币的比较研究","authors":"A. Almisreb, M. A. Saleh","doi":"10.21533/SCJOURNAL.V8I1.172","DOIUrl":null,"url":null,"abstract":"Transfer learning introduces the ability to perform deep learning models over a small set of data. This paper investigates the utilization of three fine-tuned Convolutional Neural Networks (CNNs), namely, Alexnet, Googlenet, and Vgg16. Alexnet and Googlenet consider as the state-of-the-art models in deep learning, while Vgg16 preference due to its depth. Each model was fine-tuned, trained, and tested over a dataset contains Bosnian Banknotes (BAM). The dataset covers 11 classes where 10 images were collected through mobile phone camera for each class. Alexnet showed a better performance in terms of completing the training while Vgg16 showed better performance in terms of accuracy as it achieved 100% compared to 95.24% for Alexnet. Googlenet showed less efficient performance by achieving 88.65%.","PeriodicalId":243185,"journal":{"name":"Southeast Europe Journal of Soft Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Transfer Learning Utilization for Banknote Recognition: a Comparative Study Based on Bosnian Currency\",\"authors\":\"A. Almisreb, M. A. Saleh\",\"doi\":\"10.21533/SCJOURNAL.V8I1.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transfer learning introduces the ability to perform deep learning models over a small set of data. This paper investigates the utilization of three fine-tuned Convolutional Neural Networks (CNNs), namely, Alexnet, Googlenet, and Vgg16. Alexnet and Googlenet consider as the state-of-the-art models in deep learning, while Vgg16 preference due to its depth. Each model was fine-tuned, trained, and tested over a dataset contains Bosnian Banknotes (BAM). The dataset covers 11 classes where 10 images were collected through mobile phone camera for each class. Alexnet showed a better performance in terms of completing the training while Vgg16 showed better performance in terms of accuracy as it achieved 100% compared to 95.24% for Alexnet. Googlenet showed less efficient performance by achieving 88.65%.\",\"PeriodicalId\":243185,\"journal\":{\"name\":\"Southeast Europe Journal of Soft Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Southeast Europe Journal of Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/SCJOURNAL.V8I1.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Southeast Europe Journal of Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/SCJOURNAL.V8I1.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transfer Learning Utilization for Banknote Recognition: a Comparative Study Based on Bosnian Currency
Transfer learning introduces the ability to perform deep learning models over a small set of data. This paper investigates the utilization of three fine-tuned Convolutional Neural Networks (CNNs), namely, Alexnet, Googlenet, and Vgg16. Alexnet and Googlenet consider as the state-of-the-art models in deep learning, while Vgg16 preference due to its depth. Each model was fine-tuned, trained, and tested over a dataset contains Bosnian Banknotes (BAM). The dataset covers 11 classes where 10 images were collected through mobile phone camera for each class. Alexnet showed a better performance in terms of completing the training while Vgg16 showed better performance in terms of accuracy as it achieved 100% compared to 95.24% for Alexnet. Googlenet showed less efficient performance by achieving 88.65%.