样的逻辑

M. Gerner
{"title":"样的逻辑","authors":"M. Gerner","doi":"10.1093/jigpal/jzab021","DOIUrl":null,"url":null,"abstract":"\n The need for a ‘many-valued logic’ in linguistics has been evident since the 1970s, but there was lack of clarity as to whether it should come from the family of fuzzy logics or from the family of probabilistic logics. In this regard, Fine [14] and Kamp [26] pointed out undesirable effects of fuzzy logic (the failure of idempotency and coherence) which kept two generations of linguists and philosophers at arm’s length. (Another unwanted feature of fuzzy logic is the property of truth functionality.) While probabilistic logic is not fraught by the same problems, its lack of constructiveness, i.e. its inability to compose complex truth degrees from atomic truth degrees, did not make it more attractive to linguists either. In the absence of a clear perspective in ‘many-valued logic’, scholars chose to proliferate ontologies grafted atop the classical bivalent logic: ontologies for truth, individuals, events, situations, possible worlds and degrees. The result has been a collection of incompatible classical logics. In this paper, I present sample logic, in particular its semantics (not its axiomatization). Sample logics is a member of the family of probabilistic logics, which is constructive without being truth functional. More specifically, I integrate all the important linguistic data on which the classical logics are predicated. The concepts of (in)dependency and conditional (in)dependency are the cornerstones of sample logic.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample logic\",\"authors\":\"M. Gerner\",\"doi\":\"10.1093/jigpal/jzab021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The need for a ‘many-valued logic’ in linguistics has been evident since the 1970s, but there was lack of clarity as to whether it should come from the family of fuzzy logics or from the family of probabilistic logics. In this regard, Fine [14] and Kamp [26] pointed out undesirable effects of fuzzy logic (the failure of idempotency and coherence) which kept two generations of linguists and philosophers at arm’s length. (Another unwanted feature of fuzzy logic is the property of truth functionality.) While probabilistic logic is not fraught by the same problems, its lack of constructiveness, i.e. its inability to compose complex truth degrees from atomic truth degrees, did not make it more attractive to linguists either. In the absence of a clear perspective in ‘many-valued logic’, scholars chose to proliferate ontologies grafted atop the classical bivalent logic: ontologies for truth, individuals, events, situations, possible worlds and degrees. The result has been a collection of incompatible classical logics. In this paper, I present sample logic, in particular its semantics (not its axiomatization). Sample logics is a member of the family of probabilistic logics, which is constructive without being truth functional. More specifically, I integrate all the important linguistic data on which the classical logics are predicated. The concepts of (in)dependency and conditional (in)dependency are the cornerstones of sample logic.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzab021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzab021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语言学中对“多值逻辑”的需求自20世纪70年代以来就很明显,但它应该来自模糊逻辑家族还是来自概率逻辑家族,这一点并不清楚。在这方面,Fine[14]和Kamp[14]指出了模糊逻辑的不良影响(幂等性和相干性的失败),使两代语言学家和哲学家保持距离。(模糊逻辑的另一个不想要的特性是真函数的性质。)虽然概率逻辑并不充满同样的问题,但它缺乏建设性,即无法从原子真度组成复杂的真度,这也没有使它对语言学家更具吸引力。在“多值逻辑”缺乏清晰视角的情况下,学者们选择在经典二价逻辑的基础上扩展本体:真理、个体、事件、情况、可能世界和程度的本体。结果是一个不相容的经典逻辑的集合。在本文中,我提出了示例逻辑,特别是它的语义(而不是它的公理化)。样本逻辑是概率逻辑家族的一员,它是构造性的,但不是真值泛函的。更具体地说,我整合了经典逻辑所依据的所有重要的语言数据。依赖关系和条件依赖关系的概念是示例逻辑的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample logic
The need for a ‘many-valued logic’ in linguistics has been evident since the 1970s, but there was lack of clarity as to whether it should come from the family of fuzzy logics or from the family of probabilistic logics. In this regard, Fine [14] and Kamp [26] pointed out undesirable effects of fuzzy logic (the failure of idempotency and coherence) which kept two generations of linguists and philosophers at arm’s length. (Another unwanted feature of fuzzy logic is the property of truth functionality.) While probabilistic logic is not fraught by the same problems, its lack of constructiveness, i.e. its inability to compose complex truth degrees from atomic truth degrees, did not make it more attractive to linguists either. In the absence of a clear perspective in ‘many-valued logic’, scholars chose to proliferate ontologies grafted atop the classical bivalent logic: ontologies for truth, individuals, events, situations, possible worlds and degrees. The result has been a collection of incompatible classical logics. In this paper, I present sample logic, in particular its semantics (not its axiomatization). Sample logics is a member of the family of probabilistic logics, which is constructive without being truth functional. More specifically, I integrate all the important linguistic data on which the classical logics are predicated. The concepts of (in)dependency and conditional (in)dependency are the cornerstones of sample logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on functional relations in a certain class of implicative expansions of FDE related to Brady's 4-valued logic BN4 A low-power HAR method for fall and high-intensity ADLs identification using wrist-worn accelerometer devices An efficient IoT forensic approach for the evidence acquisition and analysis based on network link Abduction and diagrams Type Theory with Opposite Types: A Paraconsistent Type Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1