含内外周向缺陷管道塑性破坏应力的预测

K. Hasegawa, Yinsheng Li, V. Mareš, V. Lacroix
{"title":"含内外周向缺陷管道塑性破坏应力的预测","authors":"K. Hasegawa, Yinsheng Li, V. Mareš, V. Lacroix","doi":"10.1115/PVP2018-84951","DOIUrl":null,"url":null,"abstract":"Bending stresses at incipient plastic collapse for pipes with circumferential surface flaws are predicted by net-section stress approach. Appendix C-5320 of ASME B&PV Code Section XI provides a formula of bending stress at the plastic collapse, where the formula is applicable for both inner and outer surface flaws. That is, the collapse stresses for pipes with inner and outer surface flaws are the same, because of the pipe mean radius at the flawed section being entirely the same.\n Authors considered the separated pipe mean radii at the flawed ligament and at the un-flawed ligament. Based on the balances of axial force and bending moment, formulas of plastic collapse stresses for each inner and outer flawed pipe were obtained. It is found that, when the flaw angle and depth are the same, the collapse stress for inner flawed pipe is slightly higher than that calculated by Appendix C-5320 formula, and the collapse stress for outer flawed pipe is slightly lower than that by Appendix C-5320 formula, as can be expected. The collapse stresses derived from the three formulas are almost the same in most instances. For less common case where the flaw angle and depth are very large for thick wall pipes, the differences amongst the three collapse stresses become large.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction for Plastic Collapse Stresses for Pipes With Inner and Outer Circumferential Flaws\",\"authors\":\"K. Hasegawa, Yinsheng Li, V. Mareš, V. Lacroix\",\"doi\":\"10.1115/PVP2018-84951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bending stresses at incipient plastic collapse for pipes with circumferential surface flaws are predicted by net-section stress approach. Appendix C-5320 of ASME B&PV Code Section XI provides a formula of bending stress at the plastic collapse, where the formula is applicable for both inner and outer surface flaws. That is, the collapse stresses for pipes with inner and outer surface flaws are the same, because of the pipe mean radius at the flawed section being entirely the same.\\n Authors considered the separated pipe mean radii at the flawed ligament and at the un-flawed ligament. Based on the balances of axial force and bending moment, formulas of plastic collapse stresses for each inner and outer flawed pipe were obtained. It is found that, when the flaw angle and depth are the same, the collapse stress for inner flawed pipe is slightly higher than that calculated by Appendix C-5320 formula, and the collapse stress for outer flawed pipe is slightly lower than that by Appendix C-5320 formula, as can be expected. The collapse stresses derived from the three formulas are almost the same in most instances. For less common case where the flaw angle and depth are very large for thick wall pipes, the differences amongst the three collapse stresses become large.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用净截面应力法预测了带有周向表面缺陷的管道塑性破坏初期的弯曲应力。ASME & pv规范第11章附录C-5320给出了塑性坍塌时的弯曲应力公式,该公式适用于内表面和外表面缺陷。也就是说,由于缺陷截面处的管道平均半径完全相同,因此内表面缺陷和外表面缺陷的管道的崩溃应力是相同的。作者考虑了缺损韧带处和无缺损韧带处分离管的平均半径。基于轴力和弯矩的平衡,得到了每根内外缺陷管的塑性破坏应力计算公式。发现,在缺陷角度和深度相同的情况下,内缺陷管的坍塌应力略高于附录C-5320公式计算的结果,外缺陷管的坍塌应力略低于附录C-5320公式计算的结果,可以想见。在大多数情况下,由这三种公式得到的坍塌应力几乎相同。在较不常见的情况下,当厚壁管道的缺陷角度和深度很大时,三种破坏应力之间的差异就会变得很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction for Plastic Collapse Stresses for Pipes With Inner and Outer Circumferential Flaws
Bending stresses at incipient plastic collapse for pipes with circumferential surface flaws are predicted by net-section stress approach. Appendix C-5320 of ASME B&PV Code Section XI provides a formula of bending stress at the plastic collapse, where the formula is applicable for both inner and outer surface flaws. That is, the collapse stresses for pipes with inner and outer surface flaws are the same, because of the pipe mean radius at the flawed section being entirely the same. Authors considered the separated pipe mean radii at the flawed ligament and at the un-flawed ligament. Based on the balances of axial force and bending moment, formulas of plastic collapse stresses for each inner and outer flawed pipe were obtained. It is found that, when the flaw angle and depth are the same, the collapse stress for inner flawed pipe is slightly higher than that calculated by Appendix C-5320 formula, and the collapse stress for outer flawed pipe is slightly lower than that by Appendix C-5320 formula, as can be expected. The collapse stresses derived from the three formulas are almost the same in most instances. For less common case where the flaw angle and depth are very large for thick wall pipes, the differences amongst the three collapse stresses become large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1