{"title":"黑洞","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0020","DOIUrl":null,"url":null,"abstract":"We discuss event horizons and black holes. First Birkhoff’s theorem is derived, and we consider the general nature of spherically symmetric spaces. Then the concepts of null surface, Killing horizon and event horizon are defined and related to one another. Cosmic censorship is briefly discussed. The Schwarzshild horizon is discussed in detail. The divergence or otherwise of redshift, acceleration, speed and proper time is obtained for infalling observers and for Schwarzschild observers. Eddington-Finkelstein coordinates are introduced and used to discuss gravitational collapse. The growth of the horizon is noted, and the causality structure is briefly considered via an introduction to the conformal (Penrose-Carter) diagram. The maximal extension is then presented, with the Kruskal-Szekeres coordinates and associated diagram. Wormholes are briefly discussed. The chapter finishes with a survey of astronomical evidence for black holes.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black holes\",\"authors\":\"A. Steane\",\"doi\":\"10.1093/oso/9780192895646.003.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss event horizons and black holes. First Birkhoff’s theorem is derived, and we consider the general nature of spherically symmetric spaces. Then the concepts of null surface, Killing horizon and event horizon are defined and related to one another. Cosmic censorship is briefly discussed. The Schwarzshild horizon is discussed in detail. The divergence or otherwise of redshift, acceleration, speed and proper time is obtained for infalling observers and for Schwarzschild observers. Eddington-Finkelstein coordinates are introduced and used to discuss gravitational collapse. The growth of the horizon is noted, and the causality structure is briefly considered via an introduction to the conformal (Penrose-Carter) diagram. The maximal extension is then presented, with the Kruskal-Szekeres coordinates and associated diagram. Wormholes are briefly discussed. The chapter finishes with a survey of astronomical evidence for black holes.\",\"PeriodicalId\":365636,\"journal\":{\"name\":\"Relativity Made Relatively Easy Volume 2\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Relativity Made Relatively Easy Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192895646.003.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We discuss event horizons and black holes. First Birkhoff’s theorem is derived, and we consider the general nature of spherically symmetric spaces. Then the concepts of null surface, Killing horizon and event horizon are defined and related to one another. Cosmic censorship is briefly discussed. The Schwarzshild horizon is discussed in detail. The divergence or otherwise of redshift, acceleration, speed and proper time is obtained for infalling observers and for Schwarzschild observers. Eddington-Finkelstein coordinates are introduced and used to discuss gravitational collapse. The growth of the horizon is noted, and the causality structure is briefly considered via an introduction to the conformal (Penrose-Carter) diagram. The maximal extension is then presented, with the Kruskal-Szekeres coordinates and associated diagram. Wormholes are briefly discussed. The chapter finishes with a survey of astronomical evidence for black holes.